THE DEVELOPMENT OF A SCALE TO MEASURE PERCEPTIONS OF THE ADVANCED AUTOMATED AIRCRAFT TRAINING CLIMATE

by

PREVENDREN NAIDOO

Submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR

(ORGANISATIONAL BEHAVIOUR)

in the

FACULTY OF ECONOMICS AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA

APRIL 2012

Supervisor: Professor Dr L. P. Vermeulen

Co-supervisor: Professor Dr P. Schaap

© University of Pretoria
FACULTY OF ECONOMIC AND
MANAGEMENT SCIENCES

Declaration

I, Prevendren Naidoo,

Declare the following:

1. I understand what plagiarism entails and I am aware of the University’s policy in this regard.

2. I declare that the thesis entitled *The development of a scale to measure perceptions of the advanced automated aircraft training climate* is my own original work, both in content and execution. Where someone else’s work was used (whether from a printed source, the World Wide Web or any other paper or electronic source), due acknowledgement was given and reference was made according to departmental requirements. The Harvard method was used to acknowledge all references.

3. I did not copy and paste any information directly from an electronic source (e.g. a web page, electronic journal article or compact or digital video disc) into this document.

4. Apart from the guidance and support from my study leaders, I did not make use of another person’s previous work or submit it as my own.

5. I did not allow and will not allow anyone to copy my work with the intention of presenting it as his/her own work.

April 2012

Signature

Date
ACKNOWLEDGEMENTS

Completing a study of this magnitude cannot be achieved without the selfless support, encouragement and help of others. I wish to express my sincere appreciation and gratitude to the following:

- First and foremost, my supervisor, Professor Dr Leo Vermeulen, for taking me under his “wing” more than 10 years ago. His guidance and passion for aviation was priceless in inspiring this research project. Without his continued support, patience, and depth of knowledge in the topic, this study would have never succeeded.

- My co-supervisor, Professor Dr Pieter Schaap, for his wisdom, advice and encouragement.

- My family and friends for their continuous support and encouragement during some of my most difficult and trying times as an academic hermit.

- Mrs Idette Noomé, for her excellent advice and patience in editing the thesis.

- Ms Rina Owen at the University of Pretoria's Department of Statistics, for her support with, and knowledge about, the more complex computational problems I encountered in this study.

- The pilots, academics and experts in the industry who unselfishly gave up their time to provide the constructive feedback and critique needed to make this study a success. The objectives of the research would never have been reached without the support of this truly wonderful group of people.

- Finally, if it were not for the individuals who sacrificed both their lives and many thousands of hours perfecting a magnificent machine in order to fulfil the elusive dream of heavier-than-air flight, this thesis would never exist.
SUMMARY

The development of a scale to measure perceptions of the advanced automated aircraft training climate

by

PREVENDREN NAIDOO

SUPERVISOR: Professor Dr L. P. Vermeulen

CO-SUPERVISOR: Professor Dr P. Schaap

DEPARTMENT: Department of Human Resource Management

DEGREE: Philosophiae Doctor (Organisational Behaviour)

Commercial air travel is regarded as the safest mode of transportation known to humankind; however, every year people lose their lives from aircraft accidents and incidents. In addition, the financial impact of an air disaster can destroy an airline organisation. Studies have found that in adverse events involving highly advanced aircraft employing complex automation, human factor issues, and particularly pilot training, continue to play a significant causal role. Special attention should therefore be paid to the training of airline pilots, who are ultimately the last line of defence in aircraft operations. Airline pilots’ perceptions of the training climate associated with advanced aircraft can be a pervasive and powerful determinant of training outcomes and eventual flight deck behaviour.

The study undertook to develop a valid and reliable instrument to measure airline pilots’ perceptions of the training climate associated with advanced aircraft equipped with highly complex automation. The goal was to construct a questionnaire by operationalizing an unobserved hypothesised construct (perceptions of the advanced automated aircraft training climate) based on three levels of analysis (the
microsphere, mesosphere and macrosphere). The study also attempted to explore the statistical relationship between the demographic variables of the respondents and the latent factors of the construct.

In order to meet the research objectives, the study began with a thorough review of the current literature on the topic to develop a systems model of the main construct under investigation. The review included a critique of the theory on organisational climate, learning, training and education, of historical data on aircraft automation, of human factors, and of aircraft accident investigation principles and case studies. The objectives of the research were fulfilled by strictly observing a positivist paradigm, and engaging in a quantitative exploration, triangulating methods with data captured from a purposive sample of the target population. The empirical study was completed in four phases. Firstly, the research construct was operationalized and the items in the proposed questionnaire validated by a panel of subject matter experts using Lawshe’s (1975) content validity ratio (CVR) technique. Inter-rater bias was assessed using Cochran’s Q test. This application resulted in the retention of 42 items. Secondly, factor analysis and item analysis was performed on the responses of the respondents for the development of the final 33 item measurement instrument. Thirdly, to explore the relationship between the demographic variables and the latent factors of the main construct, an appropriate non-parametric family of statistics was selected to gain a deeper understanding of the phenomena associated with the data. Finally, a logistic regression analysis that included specific demographic variables was performed for the development of a model to predict a pilot’s perception of the training climate associated with advanced automated aircraft.

A non-probability purposive sample of 17 subject matter experts and 229 qualified South African airline pilots was used to accomplish the goals of the study. The underlying structure of the advanced Automated Aircraft Training Climate Questionnaire (AATC-Q) was derived from the results of a Principal Axis Factor (PAF) analysis using a promax (Kappa-4) rotation. The number of factors extracted from the data set was based on a modified version of Horn’s (1965) parallel analysis, namely the Monte Carlo simulation algorithm designed by O’Connor (2000). Three core factors explained most of the underlying variability in the main construct. The first factor was a composite at the macro and meso levels of analysis, whilst the
The second and third factors became fragmented at the micro level of analysis. These three factors were then labelled Organisational Professionalism, Intrinsic Motivation and Individual Control of Training Outcomes. The quality and rigour of the derived scale were demonstrated by its content and construct validity. Overall, satisfactory results from computing Cronbach’s coefficient alpha showed that the measurement scale was also reliable.

The effect of the demographic variables on airline pilots’ perceptions of the advanced automated aircraft training climate was determined by computing relationships and comparing the responses from different categorised subsets with one another, by means of a non-parametric MANOVA and non-parametric analysis of variance. The results of these tests revealed that Flight Deck Position, Size of the Airline, Computer Literacy and Flight Experience had a significant effect on a pilot’s perception of the training climate. Results from a logistic regression model indicated that the interaction between pilots’ experiences and their perceived level of computer literacy (on a sigmoid curve), their actual experience in advanced aircraft, and their preferences for route and simulator training, were related to whether a pilot perceived the advanced aircraft training climate as favourable or not. The overall percentage of cases for which the dependent variable was correctly predicted by the regression model was computed at 63.8%.

This study represents a vital step toward an understanding of the dimensionality of the learning, education and training for, and the actual operation of, highly advanced commercial aircraft, which employ complex automation. The results provide sufficient empirical evidence to suggest that the research findings may be of particular interest to aviation psychologists, aviation safety practitioners, and airlines engaged in training pilots to operate advanced aircraft.

Keywords: automation in aviation, advanced aircraft, advanced aircraft training, Automated Aircraft Training Climate Questionnaire (AATC-Q), aviation training, aviation exploratory study, human factors, Individual Control of Training Outcomes, Intrinsic Motivation, measurement scale, Organisational Professionalism, perceptions of aviation training, training climate.
CONTENTS

Declaration.. i
Acknowledgements... ii
Summary .. iii

CHAPTER ONE: INTRODUCTION – THE PROBLEM AND ITS CONTEXT....... 19
1.1 INTRODUCTION... 19
1.2 THE RESEARCH CONTEXT... 21
1.3 THE RESEARCH PROBLEM AND ITS SIGNIFICANCE... 24
1.4 PURPOSE OF THE RESEARCH ... 27
1.5 RATIONALE FOR THE RESEARCH PROJECT ... 29
1.6 SCOPE OF THE STUDY ... 31
1.6.1 General scope .. 31
1.6.2 Theoretical scope ... 32
1.7 RESEARCH OBJECTIVES ... 34
1.8 OUTLINE OF THE STUDY ... 36

CHAPTER TWO: LITERATURE STUDY –
THE HUMAN-MACHINE INTERFACE... 38
2.1 INTRODUCTION... 38
2.2 CONTEXTUAL DEFINITIONS ... 40
2.3 CHARACTERISTICS OF ADVANCED AUTOMATED AIRCRAFT ... 40
2.3.1 Computerisation of aircraft systems ... 43
2.3.2 The dominance of aircraft technology .. 44
2.3.3 The advanced flight deck ... 46
2.3.4 Advanced airframe and mechanical subsystems ... 53
CHAPTER THREE: LITERATURE STUDY –

THE ADVANCED AIRCRAFT TRAINING CLIMATE.................................77

3.1 INTRODUCTION ..77
3.2 RESEARCH DELIMITATIONS ..78
3.3 CLARIFICATION OF THE CONSTRUCT - TRAINING CLIMATE79
 3.3.1 Introduction to climates ...80
 3.3.2 Airline training climate ...81
 3.3.3 Climate constructs associated with the airline organisation83
 3.3.4 Contextualising the advanced aircraft training climate87
3.4 APPROACHES TO LEARNING ...90
 3.4.1 Application of learning in the airline environment93
 3.4.2 Literature on airline pilots’ learning styles and subsequent organisational impact ...95
3.5 MEASURING LEARNING ..101
3.6 HYPOTHESISING AN EXPLANATORY MODEL OF THE RESEARCH CONSTRUCT ...103
3.7 CONCLUSION ...108
CHAPTER FOUR: RESEARCH AND STATISTICAL METHODOLOGY

4.1 INTRODUCTION

4.2 RESEARCH DESIGN

4.2.1 The research paradigm

4.2.2 A classification of the overall research design

4.3 REASONING

4.3.1 Abductive reasoning

4.3.2 Inductive reasoning

4.3.3 Deductive reasoning

4.3.4 Reasoning followed in the present study

4.3.5 Ontology

4.3.6 Epistemology

4.3.7 Summary of the research design

4.4 THE EMPIRICAL RESEARCH METHOD: A MULTIPLE METHOD APPROACH

4.5 MEASURING INSTRUMENTS

4.5.1 Survey method

4.5.2 The paper-and-pencil survey

4.5.3 Electronic surveying

4.6 QUESTIONNAIRE CONSTRUCTION

4.6.1 Scaling procedure

4.6.2 Item design

4.6.3 Rationale for using only positively worded items

4.6.4 Rationale used in the clustering of questionnaire items

4.7 STRUCTURE AND LAYOUT OF THE QUESTIONNAIRE USED IN THE STUDY

4.8 LEVELS OF MEASUREMENT

4.9 RESEARCH POPULATION AND SAMPLING STRATEGY

4.9.1 Determining the sample size

4.9.2 Sampling frame based on the response rate
APPENDICES ... 346

APPENDIX A: Advanced Aircraft Training Climate Expert Questionnaire

(AATCe-Q).. 346

APPENDIX B: Survey Invitation Letter ... 365

APPENDIX C: Three Scale Items... 368

APPENDIX D: Informed consent form... 370

APPENDIX E: Illustrated structure of the measurement construct..................... 372

APPENDIX F: Web based survey... 374
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of the literature study</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>The two main components of an advanced automated aircraft</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Evolution in primary flight instrumentation</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of specific flight control mechanisms</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Advanced flight deck instrumentation console (Airbus A320 example)</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>The relationship between mechanical failures and human factors</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of two aircraft control system types</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Trends in three aircraft automation surveys</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>Aircraft production versus accident rate</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>Modern flight simulator training device</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>Mathematical relationship between structured learning and flight deck behaviour</td>
<td>86</td>
</tr>
<tr>
<td>12</td>
<td>Representation of a systemic aviation training climate</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>Hypothesised model of the main research construct</td>
<td>107</td>
</tr>
<tr>
<td>14</td>
<td>Summary of the focus of the literature review and its integration with the research objective</td>
<td>109</td>
</tr>
<tr>
<td>15</td>
<td>Integrated model of reasoning used for the study</td>
<td>118</td>
</tr>
<tr>
<td>16</td>
<td>Research design cycle matrix</td>
<td>120</td>
</tr>
<tr>
<td>17</td>
<td>Multiple-method and within-method triangulation</td>
<td>125</td>
</tr>
<tr>
<td>18</td>
<td>Overall multiple-method research design</td>
<td>126</td>
</tr>
<tr>
<td>19</td>
<td>Seven-point Likert-type item</td>
<td>138</td>
</tr>
<tr>
<td>20</td>
<td>Content validation analogy</td>
<td>163</td>
</tr>
<tr>
<td>21</td>
<td>Distribution of subject matter expert demographic variables</td>
<td>169</td>
</tr>
<tr>
<td>22</td>
<td>Subject matter expert response surface model</td>
<td>179</td>
</tr>
</tbody>
</table>
Figure 23: General shape of the common sigmoid curve used in logistic regression..........................204
Figure 24: Thirty-five item scree plot ..221
Figure 25: O’Connor plot of the actual, mean and permutated eigenvalues........223
Figure 26: Factor plot in the rotated space...229
Figure 27: Matrix scatterplot for the discrimination of classes238
Figure 28: Probability plot for the interaction effect between experience and computer literacy ..288
Figure 29: Probability plot for Preference for Simulator Training289
Figure 30: Final theorised construct based on the empirical dataset...............304
LIST OF TABLES

Table 1: Definitions of some key terms ... 40
Table 2: Definitions of advanced flight deck automation 45
Table 3: Conventional and fly-by-wire aircraft control comparison 52
Table 4: Accident statistics for western-built commercial aircraft above 30 tonnes ... 61
Table 5: A chronological list of automation incidents and accidents related to the flight deck .. 64
Table 6: A chronological list of automation incidents and accidents related to airframe subsystems ... 65
Table 7: Chronological synthesis of Instruction Systems Design models (ISDs) .. 70
Table 8: Chronological list of training climate elements 84
Table 9: Aviation-related psychological elements of a training climate 88
Table 10: A synthesis of the elements affecting learning at different levels of analysis ... 100
Table 11: A chronological synthesis of some important learning inventories 102
Table 12: Root theories considered in the construction of the theoretical model . 106
Table 13: Contrasting the pros and cons of Internet surveys 131
Table 14: Contrast of scale development guidelines .. 134
Table 15: Questionnaire structure ... 143
Table 16: Contrasting notions of what constitutes a good sample size 148
Table 17: Respondent sample frame (N=229) .. 155
Table 18: Demographic data of the subject matter experts (N=17) 167
Table 19: Lawshe test results for Domain A ... 171
Table 20: Lawshe test results for Domain B ... 173
Table 21: Lawshe test results for Domain C ... 175
Table 22: Summary of expert endorsement from Cochran’s Q test 180
Table 23: Comparison of items retained after applying Lawshe’s method 181
Table 24: Acceptance levels for the measure of sampling adequacy 185
Table 25: Comparison of statistical tests .. 187
Table 26: Descriptive statistics ... 188
Table 27: A contrast of relevant Cronbach’s coefficient alpha values 198
Table 28: Summary of reliability and homogeneity coefficients 199
Table 29: Correlation statistic guideline .. 203
Table 30: Ethical issues considered in the research process 210
Table 31: Variance explained by eigenvalues greater than one (42 items) 219
Table 32: Statements deleted in the first round of exploratory factor analysis 220
Table 33: Variance explained by eigenvalues greater than one (35 items) 221
Table 34: Actual and permuted eigenvalues on 35 items based on
O’Connor’s (2000) algorithm ... 224
Table 35: The factor loadings and communalities (h^2) for the principal
factors extraction and promax rotation for the final 33-item cohort....... 227
Table 36: Item regression model and factor correlations 230
Table 37: Reliability and item statistics for Factor 1:

Organisational Professionalism (n =229) ... 234
Table 38: Reliability and item statistics for Factor 2:

Intrinsic Motivation (n =229) ... 235
Table 39: Reliability and item statistics for Factor 3:

Individual Control of Training Outcomes (n =229) 235
Table 40: Tests of equality of the discriminant group means 239
Table 41: Descriptive and distribution statistics of the three scales
and continuous independent variables (n=229) 242
Table 42: Statistical tests for normality .. 243
Table 43: Kruskal-Wallis test for the grouping variables flight deck position
and size of carrier .. 247
Table 44: Mann-Whitney *post hoc* significance tests for the grouping
variables flight deck position and size of carrier ..248

Table 45: Kruskal-Wallis test for the grouping variable interaction effect between experience in advanced aircraft and computer literacy250

Table 46: Mann-Whitney post hoc significance tests for the grouping variable interaction effect between experience in advanced aircraft and computer literacy ...251

Table 47: Kruskal-Wallis test for the grouping variable computer literacy253

Table 48: Mann-Whitney post hoc significance tests for the grouping variable computer literacy ...253

Table 49: Kruskal-Wallis test for the grouping variable manufacturer254

Table 50: Mann-Whitney post hoc significance test for the grouping variable manufacturer ...255

Table 51: Kruskall-Wallis test for the grouping variables of initial (ab initio) training ..255

Table 52: Mann-Whitney post hoc significance test for the grouping variable nature of initial training ..257

Table 53: Main demographic and factor correlations ..259

Table 54: Tests for assumptions of normality and homogeneity265

Table 55: Frequency of between-subjects factors ...266

Table 56: Omnibus Pillai-Bartlett multivariate test of significance267

Table 57: Significance tests for between-subjects effects for Factors 1, 2 and 3 ... 270

Table 58: Non-parametric comparison of mean rank scores by size of carrier and level of computer literacy ...273

Table 59: Non-parametric comparison of the mean rank scores by the level of Digital flight time experience*Computer literacy276

Table 60: Classification table and model summary ..283

Table 61: Final logistic regression model ..284

Table 62: Relationship between construct domains and derived scales303