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CHAPTER FIVE: 
 

RESULTS 
 

5.1 INTRODUCTION 
 

The primary purpose of the study was to develop a valid and reliable instrument to 

measure   airline   pilots’   perceptions   of   the   training   climate   associated   with   advanced  

automated aircraft. The fundamental goal was to develop a questionnaire by 

operationalizing a hitherto unobserved hypothetical construct (perceptions of the 

advanced automated aircraft training climate) based on the three hypothesised levels 

of analysis (the person, the group and the organisation) that conceptualised the 

construct. In addition, the purpose of the research was to explore the relationships 

between the data and the characteristics of the data further in terms of the latent 

constructs that emerged.  

 

The earlier part of the discussion provided a theoretical overview of the background in 

which the hypothetical measurement construct was devised and developed. Chapters 

5 and 6 report on the results, interpret and discuss them.  

 

Factor analysis was the statistical method used to provide scale descriptors, and it 

played a pivotal role in the development of an appropriate psychological measurement 

tool. Furthermore, the results of an analysis of the items forming the scale and the 

reliability of the constructs are reported on and discussed. To enhance the strategic 

statistical exploration of the phenomena present in the data set, initially, basic non-

parametric comparative and associational analyses were completed. Subsequently, 

more in-depth and complex analyses, such as non-parametric MANOVAs and a 

stepwise logistic regression, were conducted to round off a thorough examination of 

the data set.  
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5.2 FACTOR ANALYSIS 
 

Developing a scale for any psychological measurement instrument generally entails 

reducing the attribute space of a large number of variables into correlated factors or 

dimensions (Clason, & Dormody, 2001). Thus, it was assumed that the explanation for 

any correlations between the many variables in the dataset could be obtained from a 

small number of sub-constructs, as further substantiated by Corston and Colman 

(2003). In order to determine the number and nature of the latent factors responsible 

for most of the covariance in the current data, the process followed in this study 

consisted of the following more complex steps which is formulated within the algorithm 

for data reduction in SPSS (version 17). According to Brown et al. (2012): 

 Step 1 is to calculate the covariance matrix from the raw data; 

 Step 2 then computes a correlation matrix by transforming the aforementioned 

covariance matrix (in this case, referred to as matrix, A); 

 Step 3 is then to extract eigenvectors (in this case, xi) from the aforementioned 

correlation matrix by the method of successive squaring; 

 Step 4 obtains eigenvalues   (λi) from each eigenvector (xi) computed, based on 

the characteristic equation, A.xi = xi.   λi (the equation shows that there exists a 

unique eigenvalue in each linear transformation); 

 Step 5 finally generates the factor loadings (fi), by a normalisation of the 

eigenvectors (xi)  to  λi, that is, fi = xi (√  λi); 

 Step 6 finalises the results of the above computations, and are displayed in terms 

of the factor product matrices and factor residuals. 

 Step 7 is required to examine the diagonal of the final matrix of residuals to 

determine the amount of variance that was not accounted for in each variable, 

and also to examine the off-diagonal elements so as to determine how well the 

level of correlations amongst each variable pair was subsequently reproduced by 

the factor solution; and 

 Step 8 creates the final matrix of factor loadings (F) from the factors (fi) extracted. 

The factor loadings were used as the basis for imputing labels to the explanatory 

dimensions of the construct under investigation.  

 
 
 



- 216 - 

 

The technique therefore uses linear combinations of the empirically obtained variables 

to explain the sets of observations in the dataset.  

 

5.2.1 Sample size rationale used for the factor analysis 
 

The initial challenge in planning a factor analysis is to determine the size of the sample 

frame that is likely to result in the most stable solution. Unfortunately, the literature 

contains a multitude of divergent opinions on the question of the ideal sample size 

required for factor analysis, which made the selection of an appropriate technique 

difficult (Gorsuch, 1983; Hayton et al., 2004; MacCallum et al., 1999). Nonetheless, 

the main problem to be addressed in this study was in fact, understanding the impact 

that sampling error, rather than the sample size per se, may have had on the final 

factor analytic solution. Although sampling error can be directly related to sample size, 

sampling error can be mitigated even when the sample is relatively small, provided 

that the  sample’s  elements are of a high quality (Haworth, 1996). A high quality final 

factor solution was deemed critical for this study, because the accuracy and validity of 

subsequent analyses required a strong foundation. Thus it was important to 

understand the impact that the final sample frame would have on the factor structure.  

 

Typically, sampling error influences the estimation of factor loadings because the 

sample covariance of the measured variables is expressed as a function of the 

population’s  common  and  unique  loadings  (MacCallum  et al., 1999). This then implies 

that prescriptive sample sizes, as a ratio of the population size, or in terms of the 

number of items, might be misleading. The methodology chapter discussed the 

various rules of thumb proposed by some authors to facilitate the determination of the 

ideal sample size (see Section 4.10.1). For instance, according to Cooper and 

Schindler (2003), a sample five times the number of variables is sufficient to produce 

relatively stable factor solutions, whereas Comrey and Lee (1992:67) suggest that 

between 200 and 300 participants in a survey using factor analysis should be regarded 

as only a “mediocre” sample size. Because of these divergent expert opinions, the 

various rules of thumb have all had their fair share of critics (MacCallum et al., 1999). 

On the basis of the suggested sample sizes discussed above, the final cohort for this 

study consisted of 229 participants, which is more than the 210 participants that would 
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be five times the number of item variables – a rule of thumb in many similar studies, as 

recommended originally by Gorsuch (1983) and later by Cooper and Schindler (2003).  

 

MacCallum et al. (1999) argue that if the communalities between the variables are 

relatively high, a small sample size will produce high quality sample factor solutions (in 

other words, effective replicability and recovery of population factors). Communalities 

refer to the  proportion  of  each  variable’s  variance that can be explained by the factors 

(Ledyard, 1966); hence, high communalities in the current study indicated that the final 

sample, in terms of the validity of the questionnaire items, was highly stable. Using a 

similar method, Corston and Colman (2003) found that even analysing only a small 

portion  of  Thurstone’s  (1947)  data  set  did  not  significantly  affect  their  own  results.   

 

The average initial communalities of the 42 items which operationalised the main 

research construct were computed at 0.630. MacCallum et al. (1999) consider 

communality strengths of above 0.60 to be very good. In summary, it appears from 

various findings reported in the literature that when communalities are relatively good, 

and the content of the hypothetical framework has been validated (as is the case in the 

present study), sampling error is reduced (Corston & Colman, 2003). Therefore, using 

between 200 and 300 returns can produce high quality sample factor analytic 

solutions. It is also reasonable to assume that very small differences would have 

occurred if the study had used a sample of 500 versus a sample of 200. The first step 

in the research process was to validate the content of the construct by using a panel of 

experts. This choice may be the reason for strengthened communalities amongst the 

variables. The item communalities (h2) are reported in Tables 32 and 33. 

 

5.2.2 Factor analytic computation 
 

Using SPSS Version 17.0, in the various rounds of exploratory factor analyses, the 42 

items in respect of the content of the hypothetical construct were inter-correlated and 

analytically rotated to an oblique simple structure by means of the promax method 

(factors were permitted to optimally correlate with one another). The rotations were 

raised to a Kappa power of 4, which Hendrickson and White (1964) consider 

appropriate for most analyses in the social sciences. Kappa is a statistical parameter, 

which was used to control the calculation of the promax rotation (Morgan, et al., 2007). 
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Gorsuch (1983) found that when values of Kappa are high, correlations among factors 

tend to be high, leading to a simpler structure of the loadings. It was concluded that 

raising the loadings to a power of 4 produced an optimised solution for the dataset, 

which resulted in a simpler structure with the lowest correlation amongst the factors. 

An inter-correlation matrix consisting of 1 764 variables was subsequently produced. 

However, due to its size, this matrix is not reported here.  

 

Prior to the aforementioned factor analytic choice, two diagnostic tests confirmed that 

the data passed the minimum criteria required to conduct an initial exploratory factor 

analysis. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (which 

assesses whether the partial correlations among variables are small) and Bartlett’s  

test of sphericity (which evaluates the null hypothesis that the variables in the 

population correlation matrix are uncorrelated) both produced satisfactory results for 

the current data set.  

 

The calculated KMO value of 0.927 was greater than 0.70, which is the normal cut-off 

recommended   for   a   factor   analysis   to   proceed   (Gorsuch,   1983).   Similarly,   Bartlett’s  

test of sphericity [2 (861) = 6896.895, p < 0.001] was significant and therefore 

confirmed that the properties of the inter-correlation matrix of the 42 item scores were 

suitable for factor analysis. 

 

Subsequently,  using  Kaiser’s  (1961)  criterion,  principal  axis  factoring  (PAF)  postulated  

seven factors, where the initial eigenvalues (greater than unity) accounted for 66.248% 

of the variance in the factor space (see Table 31). The extraction was conducted on a 

correlation matrix, after conversion from a covariance matrix of the raw data. 

Therefore, the variables were standardised and the total variance (100%) would be 

found from the remaining items. The loadings and cross-loadings of the items 

associated with the seven eigenvalues greater than one were then examined. All items 

that had loadings of less than 0.40 or which were found to have a high cross loading 

on more than one factor were deleted. A cut-off point of 0.40 is the criterion generally 

used in the social sciences (Welman & Kruger, 1999). The loadings used in this round 

of analysis are not reported, due to space constraints. Items whose properties 

appeared extremely similar were also discarded, in line with the recommendations of 

Tabachnick and Fidell (2007). In total, seven items were deleted (see Table 32). 
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Finally, 35 items in a clean matrix were subjected to a second round of exploratory 

factor analysis with promax rotation and Kaiser Normalization (which is generally the 

default during rotation). This method decreased the standard errors of the loadings for 

variables with small communalities. 

 

Table 31: Variance explained by eigenvalues greater than one (42 items) 

Initial eigenvalues Extraction sums of squared loadings 

n Total % of variance Cumulative % Total % of variance 

1 16.431 39.122 39.122 16.431 39.122 

2 3.872 9.219 48.341 3.872 9.219 

3 2.174 5.177 53.518 2.174 5.177 

4 1.888 4.495 58.013 1.888 4.495 

5 1.226 2.919 60.932 1.226 2.919 

6 1.174 2.795 63.726 1.174 2.795 

7 1.059 2.522 66.248 1.059 2.522 

 

 

In general, most statistical software programs, and more specifically, the SPSS factor 

analysis  program,  defaults  to  Kaiser’s  (1961)  criterion  (eigenvalues greater than unity) 

for factor extraction. This method and other factor retention methods were examined 

further. Substantive evidence was found in the literature that demonstrated that 

surprisingly, Kaiser’s  criterion  was  correct  only  22%  of  the  time  (Hayton et al., 2004), 

which makes it problematic as a factor retention method for scale development at this 

level.  

 

Hayton et al.’s  (2004)  data  also show that  Kaiser’s  criterion  will  only  become  accurate  

when the sample size approaches infinity, and therefore it was expected that any 

sampling error in the current study would generally produce more factors in the sample 

space. Deleting some items and subjecting the remaining variables to further rounds of 

factor analysis assisted in reducing the problems associated with factor over-

estimation.  
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Table 32: Statements deleted in the first round of exploratory factor analysis 

Item Statement 
Q35 The standard operating procedures (SOPs) for learning to fly this aircraft are 

adequate. 

Q37 The simulators my company trains its pilots in are in good condition. 

Q43 I learn better when I work as a member of the crew. 

Q46 I tend to communicate well with my simulator partner. 

Q47 The instructor is committed. 

Q48 Instructors are very similar in how they teach pilots to fly this aircraft. 

Q59 I reflect on my learning experience after a simulator session. 

 

 

5.2.3 Results of the factor retention method 
 

Cattell’s  scree  plot  and  Kaiser’s  (1961)  criterion  were  used  to  determine tentatively the 

number of factors to retain, as these appeared to be the most common methods 

reported in the literature. In Figure 24, the graphs plot the eigenvalues against each 

component number. From the third or fifth factor onwards, it appears that the plot has 

flattened, which suggests that each successive factor accounts for less and less of the 

total variance explained. According to Cattell (1966), factors before the one starting 

the bend or elbow where the plot levels off should be retained. Inspection of the curve 

indicating the number of factors to retain showed that the graph was very difficult to 

decipher, due to the ambiguity in the shape of the curve. Unfortunately, the scree test 

has been shown to suffer from a degree of subjectivity. For instance, Hayton et al. 
(2004) point out that when there are no clear breaks, or, as in this case, when there 

are two or more apparent breaks, confusion can arise.  

 

In the current study, this confusion made it difficult to determine unambiguously the 

optimum number of factors to keep which can accurately describe the latent structure 

of   the  measured  construct.  A   further  problem  was   that  Kaiser’s  method  appeared   to  

overestimate the number of factors to retain, because six eigenvalues exceeded unity 

for 35 items (see Table 33). 
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Figure 24: Thirty-five item scree plot  

 

 
 

 

Table 33: Variance explained by eigenvalues greater than one (35 items) 

Initial eigenvalues Extraction sums of squared loadings 

VAR Total % of variance Cumulative % Total % of variance Cumulative % 

1 14.105 40.301 40.301 13.713 39.180 39.180 

2 3.454 9.869 50.170 3.148 8.994 48.175 

3 2.092 5.978 56.148 1.727 4.934 53.109 

4 1.767 5.048 61.196 1.454 4.156 57.264 

5 1.044 2.984 64.180 0.639 1.825 59.089 

6 1.018 2.909 67.089 0.611 1.745 60.834 
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It was observed that the first attempt at exploratory factor analysis overestimated the 

factors in the real test space for this data set using traditional methods. One source of 

this overestimation may be possible sampling error or differentially skew items 

(Hendrickson & White, 1964). According to Hayton et al. (2004), some factors may 

have eigenvalues greater than one only because they originate from a finite sample, 

as opposed to an infinite population. In an infinite population, initial eigenvalues tend to 

be greater than one, whilst later eigenvalues tend to be smaller than one. Possibly, the 

most important decision a researcher developing a scale and using factor analysis has 

to make, is deciding on the number of factors to retain (Glorfeld, 1995; Watkins, 2006).  

 

Accurate factor retention was considered to be a core requirement for the overall 

success of this study.  Both  the  scree  plot  and  Kaiser’s  method  were  inconclusive  for  

the current dataset. To determine the maximum number of significant factors, which 

would reasonably explain the variability of the main research construct, a modified 

version   of   Horn’s   (1965)   parallel   analysis   (PA)   based   on   a  Monte   Carlo   simulation, 

was conducted, as recommended by Velicer (1976).  

 

Hayton et al. (2004:194) explain that the “rationale   underlying   PA   is   that   nontrivial  

components from real data with a valid underlying factor structure should have larger 

eigenvalues than parallel components derived from random data having the same 

sample size  and  number  of  variables”.  A comparative method for exploration in factor 

analysis is considered one of the most accurate factor retention methods available 

(Rencher,  2002).  Unfortunately,  most  statistical  software  packages  do  not  offer  Horn’s  

(1965) procedure to determine the maximum number of factors to retain (Watkins, 

2006). For the current study, the  computational  algorithm  created  by  Brian  O’Connor  

(2000) was used; and by manipulating this complex syntax code within the SPSS 

editor the required analysis was achieved.  
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Figure 25:  O’Connor  plot  of  the actual, mean and permutated eigenvalues 

 

 
 

Table 34 and Figure 25 show the actual eigenvalues drawn from the real data space of 

a 35-item AATC-Q for 229 participants, together with the mean and 95th percentile 

eigenvalues extracted from 1 000 permutations of the original data set generated in a 

Monte Carlo simulation. In this simulation, in cases where the raw data are not 

normally distributed or where they do not meet the assumption of multivariate 

normality, permutations are deemed more accurate and relevant than randomised 

data  (O’Connor,  2000) 
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Table 34:  Actual  and  permutated  eigenvalues  on  35  items  based  on  O’Connor’s  
(2000) algorithm  
Root Actual eigenvalue Mean eigenvalue 95th percentile eigenvalue 
1. 13.763320 0.991263 1.110948 
2. 3.152418 0.877747 0.964691 
3. 1.734102 0.794188 0.876276 
4. 1.451794 0.723979 0.792523 
5. 0.649697 0.660416 0.722079 
6. 0.612930 0.601232 0.659002 
7. 0.574928 0.548531 0.604958 
8. 0.422722 0.498339 0.553514 
9. 0.381465 0.450765 0.499703 
10. 0.320640 0.404774 0.451020 
11. 0.297724 0.360918 0.404150 
12. 0.233578 0.318256 0.361014 
13. 0.199624 0.278398 0.317899 
14 0.196496 0.239460 0.277779 
15. 0.140422 0.202216 0.237528 
16. 0.116488 0.166291 0.204303 
17. 0.074143 0.129561 0.166742 
18. 0.042527 0.094801 0.129188 
19. 0.024271 0.060795 0.095014 
20. 0.014329 0.027945 0.060390 
21. -0.023788 -0.004203 0.027235 
22. -0.035305 -0.035648 -0.003258 
23. -0.053125 -0.067442 -0.036161 
24. -0.065674 -0.097213 -0.068280 
25. -0.078143 -0.127373 -0.099662 
26. -0.084013 -0.157061 -0.130434 
27. -0.096836 -0.185802 -0.160826 
28. -0.105393 -0.213957 -0.188567 
29. -0.124817 -0.242558 -0.218763 
30. -0.144008 -0.270705 -0.247826 
31. -0.159285 -0.299199 -0.276946 
32. -0.164820 -0.328068 -0.304783 
33. -0.175846 -0.357945 -0.333908 
34. -0.209793 -0.390079 -0.363294 
35. -0.214610 -0.428936 -0.399151 
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The  permutation  algorithm  based  on  Castellan’s  (1992)  recommendation  was used to 

compute the data set. The algorithm ensures that for N elements there are N! 
permutations, and each one is equally likely (Table 34). In accordance with the 

previous extraction methods, a principal axis or common factor analysis was 

requested for the parallel analysis. A difference can be clearly observed between the 

eigenvalues produced by the SPSS programme and those produced using the 

O’Connor   (2000) algorithm. The SPSS statistical software program computes a 

correlation matrix, which differs slightly from that being used in the syntax of the 

parallel analysis. For instance, Kendall correlation coefficients are generally used for 

ordinal variables when assumptions of normality are violated, instead of Spearman 

correlation coefficients, as in the case of normalised data.  

 

Furthermore, when the matrix is not Gramian, in that squared multiple correlations are 

inserted into the diagonal of the matrix as communalities; a principal factor extraction 

tends to produce a number of negative eigenvalues (Comrey & Lee, 1992). According 

to Gentle (2007:288),  a  Gramian  matrix  is  “a  (real)  matrix  A such that for some (real) 

matrix B, A = BTB”.   Because  BTB is symmetric, any non-negative definite matrix is 

Gramian. In addition, “each element of a Gramian matrix is the dot products of the 

columns of the constituent  matrix”   (Gentle,   2007:228). It was determined that in the 

present SPSS algorithm, the issue is automatically resolved by adjusting the off-

diagonal elements of the correlation matrix before factorisation, which is not the 

method adopted in  O’Connor’s  (2009)  program.  However, making an adjustment in the 

off-diagonal elements will, in turn, result in an underestimation of the values of 

communalities. The parallel analysis syntax uses a more accurate shuffling 

transformation technique, as recommended by Castellan (1992), for the generation of 

comparable permutated matrices. According to Castellan (1992:72), the algorithm, 

“initially  generates  a  random  integer  between  1  and  N,  swaps  the  first  element  with  the 

generated element, then generates a second random integer between 2 and N, swaps 

the  second  element  with  the  second  generated  element,  and  so  forth”.  Coding in this 

manner in order to generate permutated data sets is regarded as efficient, in that it 

requires only N-1 random integers to permutate the array of N elements; furthermore, 

the elements are sampled without replacement (Castellan, 1992). In the current study, 

eigenvalues after the 21st variable   in   the   O’Connor   output   were   negative   (dropped  

below zero). This result is due to the difference between the computation formulae 

 
 
 



- 226 - 

adopted by the SPSS programmers for factor analysis and that used  in  the  O’Connor  

syntax. Both formulae are acceptable for the purposes of exploratory factor analysis 

(Rencher, 2002). In addition, an iterative principal axis factoring technique (as in a 

Monte Carlo type simulation) is more likely to produce negative eigenvalues than a 

standard principal components method (Watkins, 2006). Also, anomalies can occur 

when eigenvalues and eigenvectors are computed after first estimating the initial 

values of the covariance matrix, as in the case of a principal axis factoring method 

(Rencher, 2002). The results set out in Figure 25 and Table 34 suggest that there are, 

at most, four eigenvalues greater than those generated by the parallel analysis for 

both the mean and the 95th percentile criterion. The raw data eigenvalues greater than 

chance ranged from 13.7 to 1.4. The 95th percentile eigenvalues for this range fell 

between 1.1 and 0.79. Therefore, four factors were deemed statistically significant (p < 

0.05), suggesting that a maximum of four components is possible in the factor space 

of the current data set (Velicer, 1976), and not seven, as was originally postulated 

using the Kaiser (1961) criterion. O’Connor (2000) suggests that the eigenvalues from 

a parallel analysis should be used to determine the maximum real data eigenvalues 

that can occur beyond chance, and additional procedures should then be used to trim 

trivial factors. In other words, the current parallel analysis indicated the maximum 

possible number of factors, but it did not impose the final number of factors to retain, 

as Hayton et al. (2004) also found.  

 

5.2.4 Finalised factor analytic solution 
 

The aim in the final factor solution was to obtain a simple structure, after an exhaustive 

retention process (see also Appendix C, for the final 3-scale solution). Only by 

determining the probable number of real factors that could exist in the variable space 

from a Monte Carlo simulation could a maximum four-factor solution be requested. 

Unfortunately, a four-factor structure resulted in generalised Heywood cases, which, 

according to Harman and Yoichiro (1966:563), are mathematical anomalies that occur 

“when  a  correlation  matrix  yields  a  suitable factor solution with several common factors 

for   which   one   of   the   communalities   exceeds   unity”.   Such   cases   indicate   that   the  

solution may be unstable, possibly because are too many or too few factors. 

Therefore, this result suggested that the solution was far from simple at this point. With 

this in mind, a three-factor  solution  was  then  requested,  because  “if  the  researcher  is  
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interested in using only demonstrably reliable factors, the fewest possible factors are 

retained”  (Tabachnick  &  Fidell,  2007:646).  
 
Table 35: The factor loadings and communalities (h2) for the principal factors 
extraction and promax rotation for the final 33-item cohort 
 

Item Statement Factor  

  1 2 3 h2 

Q29 Training on this aircraft is well organised. 0.809 -0.041 -0.021 0.708 
Q27 Training on this aircraft is professional. 0.808 0.082 0.015 0.767 
Q23 My  company’s  training  produces  world  class  pilots. 0.785 0.121 -0.078 0.770 
Q24 Training at my airline is in line with company goals. 0.785 0.115 -0.057 0.725 
Q38 The  airline  is  very  supportive  of  its  pilots’  learning  requirements  

for this aircraft. 
0.763 -0.059 0.108 0.703 

Q34 There is sufficient training guidance from the company. 0.762 -0.143 0.109 0.667 
Q28 Management follows the rules and regulations appropriately. 0.755 -0.053 -0.102 0.646 
Q39 My  company’s  culture  supports  training  for  new  technology  

aircraft. 
0.731 -0.008 -0.045 0.594 

Q30 I understand what the company expects of me when training. 0.700 0.198 0.000 0.706 
Q26 My company has talented people in training. 0.695 0.012 0.060 0.633 
Q33 If  I  had  to  experience  a  problem  in  training,  it’s  easy  for  me  to  

appeal. 
0.686 -0.250 0.291 0.681 

Q25 I  know  what  my  company’s  training  goals  are.     0.678 -0.036 0.146 0.697 
Q31 Training at my airline produces safe pilots. 0.644 0.217 -0.043 0.670 
Q40 There is sufficient feedback about my training on this aircraft. 0.606 0.029 0.090 0.546 
Q42 My company uses only current training material. 0.589 -0.106 0.035 0.428 
Q41 Training is in line with civil aviation regulations. 0.586 0.281 -0.078 0.595 
Q32 The airline gives its pilots an appropriate amount of preparation 

work for training. 
0.531 -0.028 0.189 0.525 

Q45 My instructor is willing to listen. 0.528 -0.028 0.277 0.639 
Q50 Pilots are in direct control of the training outcome. 0.522 -0.111 0.397 0.696 
Q36 I’m  given  sufficient  time  to  prepare  for  training  on  this  aircraft. 0.499 0.046 0.192 0.558 

Q61 It’s  a  good  idea  to  know  more  than  what  is  required. -0.341 0.759 0.340 0.689 
Q52 I try never to be late for a training session. 0.208 0.746 -0.257 0.828 
Q53 I co-operate when training in a simulator. 0.209 0.745 -0.238 0.810 
Q62 I aim to gain a deeper understanding of this aircraft. -0.312 0.734 0.328 0.773 
Q51 Preparation improves performance. 0.254 0.655 -0.065 0.733 
Q60 I read to understand so as to gain a deeper understanding of this 

aircraft’s  systems. 
-0.218 0.626 0.258 0.672 

Q55 I have a positive relationship with my colleagues. 0.224 0.586 -0.011 0.619 
Q44 I operate well as a crew member in the simulator. 0.182 0.521 0.148 0.595 
Q58 I enjoy studying the technical aspects of the aircraft. -0.089 0.493 0.316 0.594 

Q63 I’m  comfortable  undergoing  training  for  this  aircraft. 0.182 0.130 0.594 0.601 
Q57 I’m  in  control  of  the  outcome  of  a  training session. 0.326 -0.017 0.529 0.656 
Q64 I can control my anxiety so as to perform well in training. -0.073 0.103 0.523 0.497 
Q49 The  instructors  on  this  aircraft  don’t  overload  us  with  information. 0.398 -0.076 0.461 0.591 
Eigenvalues = 14.105; 3.454; 2.092; % variance = 40.301; 4.869; 5.978; Cumulative % = 56.148 
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A quantitatively superior solution was found by retaining only three factors (with no 

further Heywood anomalies). However, in the final 35-item   cohort,   Item   54   (“After  

training I feel a sense  of  mastery”)  and  Item  56  (“Pilots  who  come  prepared  have  no  

problems   training   for   this   aircraft”)   had   weak   loadings   (<   0.40)   in   the   final   rotated  

matrix. They were therefore also discarded from the final factor solution.  

 

The factor loadings and the communalities (h2) of the 33 items, as well as the total 

variance explained by the different factors, are depicted in Table 35. The factor 

loadings are set out in descending order for easier interpretation. Inspection of these 

results suggests that the three factors were well determined and that the three factors 

explained approximately 56.148% of the total variance in the data.  

 

According to the results, the factor scores of the factor solution ranged from excellent 

to fair, with factor scores varying from 0.809 to 0.461: 

•   0.809 to 0.499 for Factor 1;  

•   0.759 to 0.493 for Factor 2; and 

•   0.594 to 0.461 for Factor 3.  

 

Comrey and Lee (1992:203) suggest that loadings in excess of 0.70 be considered 

“excellent”, 0.63  or  more  “very  good”, 0.55  or  more  “good”, 0.45  or  more  “fair”  and  0.32  

or  more  “poor”.  Loadings  lower than 0.32 should be disregarded. High factor loadings 

are  a  clear   indication  that  a  variable   is  a  “pure”  measure  of  the  factor  (Tabachnick  &  

Fidell, 2007:649). 

 

In the current study, the average communality loadings (h2) of 0.701 to 0.586 indicated 

that the items define the factors relatively well, representing high levels of consistency 

(Leech et al., 2005). In this kind of context, Tabachnick and Fidell (2007:660) point out 

that   “[c]ommunalities indicate the percentage of variance in a variable that overlaps 

variance   in   the   factors”.   Comrey and Lee (1992:12) define the communality for a 

variable   in   factor  analysis  as   “the  sum  of   squares  of   the   factor   loadings  over  all   the  

factors”. The final factor loadings and communalities that emerged from the analysis 

were dependent on the original estimated communality values used in the early 

 
 
 



- 229 - 

correlation matrix (Comrey & Lee, 1992). Therefore, high communalities (see Table 

35) indicate homogeneity and the factorial purity of the final scale (Appendix C). 

 

The grouping of variables in the rotated space also indicates that the factors were 

sufficiently  described  by   their   items,  because  a   “clustering  of   variable  points   reveals  

how clearly defined a factor is”   (Tabachnick   &   Fidell,   2007:647).   The   linear  

combinations of the variables are presented in the rotated factor pattern matrix (see 

Figure 26). However, only one clear factor cluster (Factor 1) can be seen within the 

rotated space. The remaining two factors may not be as clear, because values of the 

loadings are based on the common variance, which is generally lower than the total 

variance.  
 

Figure 26: Factor plot in the rotated space 
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In addition, the internal consistency of the factor solution was verified by calculating 

the Squared Multiple Correlations (SMCs). This index indicates that the variable data 

points were fixed in the factorial space to a high degree of certainty (Bentler & Raykov, 

2000), as set out in Table 36.  

 

The importance of each factor was assessed by the percentage of variance that it 

represented. The Sum of Squared Loadings (SSLs) from the rotated factors is the 

redistributed variance during rotation. Each of the factors accounted for between 6% 

and 40% of the covariance. As expected, the first factor (F1) accounted for the bulk of 

the covariance.  

 

The SMCs values and the intercorrelation between the three factors are depicted in 

Table 36. The results suggest that the three factors intercorrelated significantly with 

one another (r = 0.242 to 0.446). The strength of the correlations indicates that the 

three factors are closely related in measuring the constructs associated with the 

advanced automated aircraft training climate. Although the relatively high 

intercorrelations may also suggest overlapping variability, the SMCs nonetheless 

indicate that all the factors were sufficiently defined by the relevant items. 

 

Table 36: Item regression model and factor correlations 

  

SMC 

Model 

(Factor) 

R R Square Adjusted R Square Standard error of the 

estimate 

  

1 0.995 0.990 0.989 0.10083248 

2 0.991 0.983 0.982 0.12711818 

3 0.900 0.809 0.806 0.40278467 

 Factor correlations 

Factor F1 F2 F3 

1 1.000 0.446 0.431 

2 0.446 1.000 0.242 

3 0.431 0.242 1.000 
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The SMCs or R2 values in Table 36 were calculated by means of the regression 

method described by Tabachnick and Fidell (2007). Items were taken as predictors of 

the factor constructs to produce the SMC models shown. The high R2 values, ranging 

from 0.809 to 0.990, between the item scores and the factor scores testify to a good fit 

between the item scores and the latent factors. The R2 values also represent the 

proportion of shared variance between each of the items and its related factor. The 

results indicate that the items could account for between 80% and 98% of the variation 

in the three factors. The model provides the necessary evidence to demonstrate that 

the items are significant explanatory variables of   the   latent   constructs   of   pilots’  

perceptions of the advanced aircraft training climate.  

 

The results of the analysis discussed above suggest that the items of the 

questionnaire exceeded the required adequacy in measuring the factors that they were 

related to. The item clusters were used as a guide for the factor labelling process. 

 

5.3 SCALE LABELLING AND FACTOR DESCRIPTION 
 

In order to communicate the nature of the underlying constructs, factors must be 

appropriately labelled (Ledyard, 1966). From an inspection of the content of the sub-

scales, it is possible to gain a deeper understanding of the nature of the underlying 

factor constructs (Comrey & Lee, 1992). In addition, factors are represented by 

different sets of variables and therefore each factor should be well differentiated from 

the others.  

 

“The   variables   that   have   high   loadings   on   the   rotated   factor   are   studied   carefully   to  

determine  what  they  share  in  common”  (Comrey  &  Lee,  1992:11).  The description and 

naming of the latent factors that accounted for most of the variability in the main 

research construct was based on the three to five statements with the highest 

explanatory connotations within each grouping such that: 

 Factor 1 
This factor essentially relates to the organisational aspects of the training climate. 

Items from both the macro domain (the airline) and the intermediate (instructor-

trainee) domain loaded substantively onto Factor 1. Essentially, the factor 

expresses a component of the theoretical construct in terms of the efficiency, 
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effectiveness and professionalism of both the company and its flight instructors. 

The elements dominating this factor relate to organisational co-ordination, trainee 

support, rules, regulations, sufficient learner feedback and guidance. This factor 

is referred to as Organisational Professionalism. 

 Factor 2 
This factor contains elements representing the micro level of analysis (the 

person). The   factor   predominantly   reflects   the   individual   trainee’s   ability   and  

eagerness to learn and understand complex concepts relating to advanced 

aircraft. Learning the aspects of a complex technology is regarded as a 

structured and iterative quantitative increase in knowledge. The fundamental 

aspects  of   this   factor   relate   to  an   individual’s   learning  approach,  preparedness,  

and willingness to participate and co-operate in training to gain a knowledgeable 

and workable understanding of the advanced aircraft. This factor has been 

labelled Intrinsic Motivation.  

 Factor 3 
The  third  factor  represents  an  individual  trainee’s  own  perceived  level  of  control  

in terms of stress levels and decision making, regarding the training required to 

operate an advanced automated aircraft. Four items found in the micro domain 

(the person) loaded meaningfully onto this factor. The principal elements of 

Factor 3 relate to the levels of perceived comfort experienced by trainees during 

training, their belief in their ability to control the outcome of a training session, 

their capacity to control their levels of stress (eustress or anxiety) in order to 

perform well, and ultimately their grasp of the amount of information required to 

cope with their training (intelligent decision making). This factor is referred to as 

Individual Control of Training Outcomes.  
 

Comrey and Lee (1992:11) suggest that a researcher go beyond simply doing a factor 

analysis and  labelling  the  factors,  because  a  factor  analysis  should  be  considered  “a  

way  of  generating  hypotheses  about  nature”. The derived factor constructs and rotated 

factor matrix can therefore be considered as only one interpretation of the latent 

behaviour of the present population (Appendix E).  
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5.4 RELIABILITY ANALYSIS 
 

“The   reliability   of   a   measuring   instrument   is   defined   as   its   ability   to   consistently  

measure   the  phenomenon   it   is  designed   to  measure”   (Ho,  2006:239).  However, it is 

expected that data variables will not be perfectly reliable because they are not 

perfectly correlated (Comrey & Lee, 1992). In order to determine the level of internal 

consistency (the interrelatedness of a set of items and the extent to which the items in 

a scale measure the same construct), Cronbach’s  coefficient  alpha was computed for 

each of the sub-scales. In addition, the mean inter-item correlations were computed to 

assess the internal homogeneity and unidimensionality of the item clusters in each 

factor scale, as recommended by Pett et al. (2003). Furthermore, the mean, standard 

deviation, skewness, and kurtosis, for each of the items were calculated to assess the 

distribution of the reposes of the present sample on the 33 item AATC-Q  

 

As described in Tables 37 to 39, the Cronbach’s   coefficient   alphas   (α)   of   all   three  

factors were relatively high and exceeded the recommended threshold of 0.70, which 

is the accepted standard requirement for levels of internal consistency in social 

sciences studies of this nature and for the number of items in a scale (Comrey & Lee, 

1992; Cortina, 1993; Cronbach, 1951; Morgan & Griego, 1998; Nunnally & Bernstein, 

1994). Furthermore, the findings indicate that each item contributed significantly to the 

high reliability coefficient within each factor. It was also apparent that none of the items 

adversely reduced the value of alpha if the item was removed from the cluster.  

 

The high Cronbach coefficient alphas were also interpreted as an indication that there 

is very little variance specific to individual items. In other words, the sets of items were 

found   to   conform   to  Cronbach’s   (1951)   original   definition   of   equivalence, where the 

value  of  Cronbach’s  alpha  takes  into  account  all  the  information  contained  in  the  items,  

namely the number of items, their variance and covariance.  
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Table 37: Reliability and item statistics for Factor 1: Organisational 
Professionalism (n =229) 
Item 
statistics 

Sk Ku Mean Standard deviation Corrected item 
total correlation 

Cronbach’s  alpha  
if the item is 
deleted 

Q23 -1.42 2.17 5.97 1.162 0.776 0.948 
Q24 -1.22 2.26 6.04 1.023 0.781 0.949 
Q25 -1.18 1.23 5.67 1.355 0.722 0.949 
Q26 -1.60 3.65 6.03 1.151 0.700 0.949 
Q27 -1.81 4.19 6.15 1.066 0.828 0.948 
Q28 -1.29 1.23 5.46 1.497 0.668 0.950 
Q29 -1.42 1.99 5.65 1.370 0.767 0.948 
Q30 -1.43 2.33 6.08 1.079 0.759 0.949 
Q31 -1.41 2.17 6.00 1.116 0.693 0.949 
Q32 -1.21 1.14 5.56 1.449 0.600 0.951 
Q33 -1.09 0.69 5.39 1.609 0.701 0.950 
Q34 -1.36 1.78 5.65 1.367 0.736 0.949 
Q36 -1.61 2.55 5.91 1.383 0.595 0.951 
Q38 -1.33 1.53 5.66 1.417 0.783 0.948 
Q39 -1.38 1.48 5.75 1.385 0.689 0.949 
Q40 -1.25 1.31 5.65 1.288 0.659 0.950 
Q41 -2.24 6.07 6.38 1.018 0.649 0.950 
Q42 -1.51 2.71 5.90 1.201 0.553 0.951 
Q45 -1.53 2.78 5.77 1.275 0.623 0.950 
Q50 -0.94 0.57 5.21 1.401 0.637 0.950 

Reliability statistics N of items 
 
 

20 

Mean inter-item 
correlation 

 
0.663 

Cronbach’s  
alpha 

 
0.952 

Scale statistics Mean 
 

115.86 

Variance 
 

348.249 

Standard 
deviation 
18.661 
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Table 38: Reliability and item statistics for Factor 2: Intrinsic Motivation 
(n = 229) 
Item 
statistics 

Sk Ku Mean Standard 
deviation 

Corrected item 
total correlation 

Cronbach’s  alpha  
if the item is 
deleted 

Q44 -1.01 0.92 6.16 0.844 0.599 0.865 

Q51 -1.89 3.27 6.52 0.820 0.645 0.861 

Q52 -3.29 11.20 6.76 0.694 0.624 0.865 

Q53 -2.69 6.98 6.74 0.643 0.635 0.865 

Q55 -1.17 1.13 6.41 0.724 0.603 0.866 

Q58 -1.28 2.39 5.72 1.131 0.560 0.873 

Q60 -1.25 2.09 5.92 1.099 0.632 0.864 

Q61 -1.73 3.83 6.31 0.944 0.678 0.858 

Q62 -1.27 2.15 6.17 0.926 0.711 0.855 

Reliability statistics N of items 
 
 

9 

Mean inter-item 
correlation 

 
0.632 

Cronbach’s  
alpha 

 
0.877 

Scale statistics Mean 
 

56.71 

Variance 
 

31.910 

Standard 
deviation 
5.649 

 

 
Table 39: Reliability and item statistics for Factor 3: Individual Control of 
Training Outcomes (n =229) 
Item 
statistics 

Sk Ku Mean Standard 
deviation 

Corrected item 
total correlation 

Cronbach’s  alpha  if  
the item is deleted 

Q49 -1.22 1.38 5.36 1.387 0.544 0.701 
Q57 -1.15 1.56 5.52 1.255 0.546 0.692 

Q63 -2.23 7.48 6.26 0.968 0.691 0.634 
Q64 -1.54 3.08 5.83 1.139 0.452 0.741 
Reliability statistics N of items 

 
 

4 
 

Mean inter-item 
correlation 

 
0.558 

 

Cronbach’s  
alpha 

 
0.750 

Scale statistics Mean 
 

22.97 

Variance 
 

13.109 

Standard 
deviation 

3.621 
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An examination of the reliability analyses in Tables 37 to 39 showed that the corrected 

item correlations of all three factors indicate that the specific items would make good 

components of a summated rating scale. The mean inter-item correlations scores on 

the three factors also satisfy the requirements of homogeneity and unidimensionality 

suggested by Clark and Watson (1995). An examination of the scores of the mean 

inter-item correlations in Tables 37 to 39 indicates that the items measured a narrow 

or well-defined construct (Zeller & Carmines, 1980). The average inter-item 

correlations for the three factors all yielded exceptionally high values (Factor 1 = 

0.663; Factor 2 = 0.632 and Factor 3 = 0.558).  

 

Clark and Watson (1995) suggest that the specificity of the target construct is 

prominent when the average inter-item correlation exceeds 0.50. Using a panel of 

experts to initially scrutinise construct items (from an application of the Lawshe 

method) considerably improved the quality of the items and, more importantly, trimmed 

invalid items, thereby retaining superior final variables for scale development.  

 

Based on the results reported above, all the items of the three factors in each table 

were retained as separate indicators to measure airline pilots’   perceptions   of   the  

training climate associated with advanced automated aircraft. An inspection of the 

items in Factor 1 (Table 37), Factor 2 (Table 38) and Factor 3 (Table 39) reveals that 

all the item means are between 5 and 7, with an approximate standard deviation of 0.9 

to 1.1, and that all the skewness coefficients are negative, ranging from -0.940 to -

3.29. A normal distribution has a skewness index of zero. Thus, the distribution of 

each  factor  would  have  a   long  “tail”   to   the   left  and  can  be  said to deviate somewhat 

from normality (Morgan & Griego, 1998:49).  

 

Kurtosis determines whether the peak of the distribution is higher or lower than the 

ideal normal curve. In a normal distribution, kurtosis is equal to zero. An examination 

of the results revealed high kurtosis values, ranging from 0.57 to 11.20. Here, the 

positive kurtosis index implies very peaked curves. These deviations from the normal 

distribution were expected due to the homogeneous nature of the sample. The 

normality of the data and the implications of non-normal distributions for the selection 

of statistical procedures are explored in Section 5.6. 
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5.5 ITEM DISCRIMINATION ANALYSIS  
 

The goal of the study from here on is to understand the nature and finer characteristics 

of the scaled construct. According to Brown (1983), researchers should ensure that 

their measurements are as valid and as reliable as possible when phenomena are 

measured on the basis of psychological scales. An item discrimination analysis was 

deemed necessary in order to fulfil  Brown’s  (1983)  requirement  for  increased  proof  of  

validity and reliability.  

 

A scale is considered more effective when its items differentiate successfully between 

the proportions of high and low scorers (Cortina, 1993; Leech et al., 2005).  A well-

formulated item should have the predictive power to place top scoring participants into 

an upper group and lower scoring participants into a lower group.  

 

To determine the level of item-discrimination in the scale of the current study, a 

discriminant function analysis was used to classify a dichotomous dependent variable 

based on information from continuous or ordinal independent variables (in this case, 

the factor items). The latent construct factors for this process were considered 

independent for the purposes of the analysis (in other words, reversal). Cases were 

allocated a place in a dichotomous group labelled Discriminant Category. The 

formulated Discriminant Category group became the dependent variable for the 

purposes of this computation. The group contained two dummy variables, 0 and 1. 

Each placement was based on whether the mean inter-item score was in the upper 

bound (>5.0, Dummy Variable 1) or the lower bound (<4.99, Dummy Variable 0). Prior 

to conducting the analysis, however, a matrix scatter plot (see Figure 27) was used to 

analyse the basic assumptions required for proper model specification. 

 

Figure 27 depicts a comparison of the scatter plots for the upper bound (Dummy 

Variable 1) and the lower bound (Dummy Variable 0) groups. It appears that the 

scatter plots for the same variables are similar with regard to their variability for the two 

groups. Therefore, the assumption of the homogeneity of variance-covariance 

matrices was met and additional quantitative analyses based on the discriminant 

function could proceed. Table 40 sets out the results of the discriminant significance 
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tests  based  on  Wilks’s lamda for each item. Wilks’s lamda is the statistic of choice to 

separate variable classes (Mardia, Kent, & Bibby, 1979). 

 

Figure 27: Matrix scatterplot for the discrimination of classes 
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Table 40: Tests of equality of the discriminant group means  
Item  Wilks’s  

lambda 
F df1 df2 Sig. 

Q23 My  company’s  training  produces  world-
class pilots. 

0.820 49.742 1 227 0.000 

Q24 Training at my airline is in line with 
company goals. 

0.838 43.956 1 227 0.000 

Q25 I  know  what  my  company’s  training  goals  
are.   

0.846 41.381 1 227 0.000 

Q26 My company has talented people in 
training. 

0.867 34.969 1 227 0.000 

Q27 Training on this aircraft is professional. 0.808 54.019 1 227 0.000 

Q28 Management follows the rules and 
regulations appropriately. 

0.865 35.433 1 227 0.000 

Q29 Training on this aircraft is well organised. 0.841 42.902 1 227 0.000 

Q30 I understand what the company expects 
of me when training. 

0.801 56.445 1 227 0.000 

Q31 Training at my airline produces safe pilots. 0.827 47.510 1 227 0.000 

Q32 The airline gives its pilots an appropriate 
amount of preparation work for training. 

0.911 22.099 1 227 0.000 

Q33 If I had to experience a problem in 
training,  it’s  easy  for  me  to  appeal. 

0.880 30.986 1 227 0.000 

Q34 There is sufficient training guidance from 
the company. 

0.866 35.184 1 227 0.000 

Q36 I’m  given  sufficient  time  to  prepare  for  
training on this aircraft. 

0.850 39.908 1 227 0.000 

Q38 The  airline  is  very  supportive  of  its  pilots’  
learning requirements for this aircraft. 

0.839 43.424 1 227 0.000 

Q39 My  company’s  culture  supports  training  
for new technology aircraft.  

0.879 31.332 1 227 0.000 

Q40 There is sufficient feedback about my 
training on this aircraft. 

0.860 37.087 1 227 0.000 

Q41 Training is in line with civil aviation 
regulations. 

0.860 37.088 1 227 0.000 

Q42 My company uses only current training 
material. 

0.942 13.885 1 227 0.000 

Q44 I operate well as a crewmember in the 
simulator. 

0.731 83.422 1 227 0.000 

Q45 My instructor is willing to listen. 0.793 59.407 1 227 0.000 

Q49 The  instructors  on  this  aircraft  don’t  
overload us with information. 

0.814 51.897 1 227 0.000 

Q50 Pilots are in direct control of the training 
outcome. 

0.743 78.615 1 227 0.000 

Q51 Preparation improves performance. 0.801 56.292 1 227 0.000 

Q52 I try never to be late for a training 
session. 

0.874 32.751 1 227 0.000 

Q53 I co-operate when training in a simulator. 0.862 36.387 1 227 0.000 
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Item  Wilks’s  
lambda 

F df1 df2 Sig. 

Q55 I have a positive relationship with my 
colleagues. 

0.779 64.554 1 227 0.000 

Q57 I’m  in  control  of  the  outcome  of  a  training  
session. 

0.719 88.890 1 227 0.000 

Q58 I enjoy studying the technical aspects of 
the aircraft. 

0.741 79.141 1 227 0.000 

Q60 I read to understand so as to gain a 
deeper  understanding  of  this  aircraft’s  
systems. 

0.718 89.171 1 227 0.000 

Q61 It’s  a  good  idea  to  know  more  than  what  
is required. 

0.770 67.908 1 227 0.000 

Q62 I aim to gain a deeper understanding of 
this aircraft. 

0.700 97.463 1 227 0.000 

Q63 I’m  comfortable  undergoing  training  for  
this aircraft.  

0.678 107.95 1 227 0.000 

Q64 I can control my anxiety so as to perform 
well in training. 

0.711 92.195 1 227 0.000 

 

 

According to the values set out in Table 40, Wilks’s lambda varied from 0.678 to 0.942, 

indicating that the variables differentiated moderately between the upper and lower 

groups (Mardia, et al., 1979). The F-test of Wilks’s lambda shows the variables’ 

contributions that are significant. The F-test significance levels for all the items were 

good (p < 0.001), which in turn indicated that each of the items in the scale was a 

significant discriminant group predictor by itself.  

 

In addition, the computation of the chi-square test statistic for the data also confirmed 

the inequality of the location of the mean scores of the upper bound and the lower 

bound groups (2 [1,127] = 278.347; p < 0.001), and attested that the 33 items in the 

combined scale (predictors) are able to separate the upper and lower discriminant 

groups effectively and significantly, suggesting that the scale has an appropriate 

discriminant ability. 

 

5.6 DATA EXPLORATION: ANALYSIS OF DISTRIBUTION 
 

Normality of data is an underlying assumption of parametric statistical testing; 

therefore testing that the scores are normally distributed and variances of groups are 

equal is a prerequisite for studies of this nature (Field, 2005). In order to decide on the 
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most appropriate family of statistics to analyse the summated scale scores further, 

variable score distributions were examined. Table 41 depicts the descriptive statistics 

of the instrument and some fundamental demographics. 

 

Variables were considered continuous scales when measuring their means, the 

standard deviations, kurtosis and skewness of scores (because each item was based 

on a Likert design). The rejection of the assumption of normality can be determined 

from key statistics. In cases where the skewness and kurtosis are more than 2.5 times 

the standard error, the assumption of normality of data is violated (Morgan & Griego, 

1998:49).  

 

Next, the Kolmogorov-Smirnov and Shapiro-Wilks tests were used to test goodness-

of-fit to obtain a statistic (a z-value) and a p-value. Apart from the three scales, the test 

was also applied to important demographic variables that described the sample. These 

were further collapsed into categories of the airline company size (small, medium, 

large) in Table 42 for further scrutiny.  

 

It was important to determine the extent of non-normality amongst the airline carriers 

in terms of their sizes, because the literature demonstrates that the number of aircraft 

operated by an airline can directly influence organisational phenomena such as 

training. For instance, there is a direct correlation between the number of aircraft in a 

fleet and the preponderance of schedule frequencies, the number of pilots and the 

resources available (Wilson & Weston, 1989). These results are reported in Table 41.  

 

The results show that the null hypothesis that either the demographic or the factor 

space samples come from a one-dimensional normal probability distribution should be 

rejected (p < 0.05) for all three factors and for the majority of the demographic 

variables. The two components of normality (Sk and Ku) were assessed (see Table 

41). The results show that the mean was not in the centre of the distribution for either 

the continuous independent variables or the latent factors. In fact, the negative 

skewness computed for the three scales attested to the clustering of cases to the right 

of the distributions. The opposite was true for the distributions of the independent 

variables. Similarly, an investigation of kurtosis reveals that the distributions of the 

three scales were strongly peaked, with short, thick tails. Kurtosis values below zero 
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indicated that the data associated with this index had a flat distribution, with many of 

the cases in the tails.  

 

Table 41: Descriptive and distribution statistics of the three scales and 
continuous independent variables (n=229) 
Measurement 
scale 

Mean score Standard 
deviation 

Skewness Kurtosis 

Sk Std. error Ku Std. error 
Organisational 
professionalism  

115.86 18.661 -1.241 0.161 2.316 0.320 

Intrinsic 
Motivation  

56.71 5.649 -1.392 0.161 1.506 0.320 

Individual 
Control of 
Training 
Outcomes 

22.97 3.621 -1.328 0.161 2.613 0.320 

Age 41.28 11.36 0.375 0.161 -0.948 0.320 
Experience 
(years) 

20.75 11.66 0.500 0.161 -0.877 0.320 

Flying time 
(hours) 

9753.29 6116.72 0.731 0.161 -0.215 0.320 

Digital time 
(hours) 

4176.23 3216.05 0.875 0.161 0.307 0.320 

 

 

Basic sample descriptive statistics, such as age, experience and flying time, are 

conceptually related to one another and exhibit similar distributive characteristics. Non-

normality in the independent variables was expected, because, given the nature of the 

industry, the sample was extremely homogeneous, and all the participants had high 

levels of flight experience. Because the skewness and kurtosis of data do not indicate 

how close to normality a distribution actually is, and these indicators tend to deal with 

only one aspect of non-normality each (Field, 2005, 2009), to be truly useful, 

demographics relating to the size of the organisation had to be examined using the 

Kolmogorov-Smirnov and Shapiro-Wilks goodness-of-fit tests, bearing in mind the 

guideline   that   the   “[s]creening   of   continuous   variables   for   normality   is   an   important  

early  step  in  almost  every  multivariate  analysis”  (Tabachnick  &  Fidell,  2007:79).   

 

The results of the objective statistical tests are set out in Table 42. 
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Table 42: Statistical tests for normality 

 

 Kolmogorov-Smirnov Shapiro-Wilks 
Variables (omnibus) Statistic df Sig. Statistic df  Sig. 

Age 0.098 229 0.000 0.953 229  0.000 
Experience 0.117 229 0.000 0.938 229  0.000 
Flying time 0.093 229 0.000 0.934 229  0.000 
Digital time 0.141 229 0.000 0.918 229  0.000 
Organisational 
Professionalism  

0.096 229 0.000 0.950 229  0.000 

Intrinsic Motivation  0.087 229 0.000 0.955 229  0.000 
Individual Control of 
Training Outcomes 

0.063 229 0.030 0.976 229  0.001 

   Kolmogorov-Smirnov Shapiro-Wilks 
Variables 
(categorised) 

Size of 
carrier 

   Mean 
Statistic df Sig. Statistic df Sig. 

Age (years) Large 44 0.092 135 0.008 0.958 134 0.000 
Medium 33 0.164 48 0.002 0.858 49 0.000 
Small 41 0.112 46  0.189* 0.932 46 0.010 

Experience 
(years) 

Large 24 0.094 135 0.005 0.957 134 0.000 
Medium 13 0.176 48 0.001 0.836 49 0.000 
Small 20 0.193 46 0.000 0.870 46 0.000 

Flying time 
(hours) 

Large 11993 0.076 135 0.057 0.969 134 0.004 
Medium 5708 0.176 48 0.001 0.851 49 0.000 
Small 7537 0.188 46 0.000 0.801 46 0.000 

Digital time 
(hours) 

Large 5378 0.071 135  0.095* 0.972 134 0.008 
Medium 2663 0.225 48 0.000 0.829 49 0.000 
Small 2287 0.259 46 0.000 0.690 46 0.000 

Organisational 
Professionalism  
 

Large 5.86 0.096 135 0.004 0.897 134 0.000 
Medium 5.67 0.080 48 0.200* 0.972 49  0.284* 
Small 5.47 0.090 46 0.200* 0.923 46 0.005 

Intrinsic 
Motivation  

Large 5.35 0.158 135 0.000 0.886 134 0.000 
Medium 5.39 0.187 48 0.000 0.863 49 0.000 
Small 5.19 0.204 46 0.000 0.873 46 0.000 

Individual 
Control of 
Training 
Outcomes 
  

Large 4.33 0.118 135 0.000 0.914 134 0.000 
Medium 4.32 0.193 48 0.000 0.846 49 0.000 
Small 4.38 0.167 46 0.003 0.916 46 0.003 

Significant when P < 0.05 
 
* Not significant 
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The two-tailed test for significance in Table 42 shows that for the vast majority of the 

continuous independent variables and latent dependent factors, the distribution of the 

scores was statistically non-normal (p < 0.01).  

 

The Shapiro-Wilks test provides a far superior computation of the test statistic (Field, 

2009). Therefore, an appropriate family of non-parametric methods was used to 

explore phenomena in the data further, and determine the statistical significance of the 

relationship between the various characteristics of South African airline pilots and their 

perceptions of the advanced automated aircraft training climate. 

 

5.7 RESULTS OF THE NON-PARAMETRIC COMPARATIVE STATISTICS USED 
TO EXPLORE PHENOMENA 

 

The previous section has dealt with an in-depth exploratory analysis of the underlying 

characteristic phenomena based on the observed evidence, which manifested from 

within the data. However, to gain a deeper understanding of what other phenomena 

might be present, it was decided to conduct a series of non-parametric comparative 

tests. This helped the researcher, as a first step, to enhance the subsequent more 

complex statistical analysis in the current study. The nature of the study is primarily 

exploratory. In this section, non-parametric comparisons were conducted on broad 

categories of the independent variable. Any significance was then followed up with 

appropriate post hoc univariate examinations. Thereafter, a detailed exploration of the 

phenomena was conducted using a non-parametric MANOVA technique, as reported 

in Section 5.9 and its sub-sections. 

 

The Kruskal-Wallis test was conducted to compare multivariate data. When data are 

deemed ordinal and the assumptions of the equality of group variances are violated, 

appropriate non-parametric statistics such as these are recommended (Field, 2005, 

2009). The mean rank scores of various independent categorical groups were 

compared and examined to guide the more complex analyses in the study. 

 

Where significant differences were found, a post hoc non-parametric test, the Mann-

Whitney test, was used to determine the statistical significance of the actual difference 

between the highest and lowest ranking categories. When the means of the various 
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demographic categories are tested, the most appropriate statistic used in parametric 

statistics  is  Student’s  t-test. However, in a case such as this, either the Mann-Whitney 

U or the Wilcoxon W would more be useful or appropriate as a non-parametric 

alternative (Green & Salkind, 2008). The Mann-Whitney test was therefore applied to 

the   data   as   the   equivalent   to   the   independent   sample’s   t-test to evaluate the 

differences between the medians. This test is useful in determining the significance of 

differences between the mean ranks for dyadic categorical independent variables and 

continuous dependent variables (Field, 2005; Leech et al., 2005). In addition, sample 

sizes in excess of 40 are deemed more appropriate and large enough for this type of 

non-parametric comparison to yield accurate p-values (Green & Salkind, 2008). 

Reporting the effect of loss in statistical power may then not be necessary for Mann-

Whitney comparative tests when sample sizes are sufficiently large (Field, 2009; 

Green & Salkind, 2008).  

 

Although Field (2005:550) recommends applying the “Bonferroni correction” as a 

preventative measure against inflated Type 1 errors when conducting numerous post 
hoc tests, it was not a requirement for the present data set being examined. Therefore, 

combining independent variable classes to obtain sample categories that were 

sufficiently large and relevant for comparison mitigated the possibility of inflating Type 

1 errors when conducting post hoc tests. Alternatively, the formula (r = z/√N)  provided 

by Field (2005) was used as an indication of the effect size associated with any 

significant differences between the mean ranks of samples.   It  was  assumed   that   r  ≤  

0.10 suggests no practical significance, r > 0.10 suggests a small effect, r   ≥   0.30 

suggests  a  medium  effect,  and  r  ≥  0.50  suggests  a  large  effect. 

 

The effect sizes in terms of small, medium or large effect sizes, as a method of power 

and practical significance analysis should, however, be read in context, because one 

should beware of an overly broad categorisation, based on what Ellis (2010:230) calls 

“T-shirt   sizes”.   The   computation   of   effect   sizes   and   practical   significance   has   been  

criticised by some authors as becoming increasingly generalised, which may then 

mask important alternative explanations or diminish useful considerations (Ellis, 2010). 

Thus, even where the effect size in the data seemed to diminish the impact of tests 

yielding significant p-values, it was considered in context for the purpose of the 

discussion of the nature of the phenomena observed. The concept of effect size, as 
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originally proposed by Cohen (1988), has been adopted in the interpretation of the 

current research results in an effort to illuminate and complement the statistically 

significant findings. 

 

The information provided in Tables 43 to 52 describes the strength in the differences 

or similarities between the various groups with regard to the latent behavioural factors 

observed in the construct. First, broad assessments on the behavioural scales in 

respect of the demographic groupings were made using a multivariate non-parametric 

comparative procedure (the Kruskal-Wallis or K-W procedure). Thereafter, a drill-down 

was done, using a two-sample non-parametric statistical analysis to examine 

differences in the mean ranks (M-W).  

 

To examine the presence of any potentially ordered pattern in the medians of each 

group, the Jonckheere-Terpstra (J-T) test was used to assess the possibility of such 

data trends (Field, 2005, 2009). This test is useful when a researcher suspects that the 

order of the independent groups may be meaningful. Significant Jonckheere-Terpstra 

tests provide a valuable and useful basis for a more detailed understanding of the 

phenomena present within data. These analyses provided initial observable contact 

with the data set and also provided an indication of the correct path to follow for 

conducting further exploration. It was also then necessary to repeat the post hoc 

Mann-Whitney tests for some aspects of the data after discovering potentially 

important phenomena, such as Jonckheere-Terpstra trends.  

 

Tables 43 to 52 set out the values for the chi-square and z-scores for the relevant 

significance tests, together with the two-tailed asymptotic levels. Some authors have 

argued that the one-tailed significance test cannot play an effective role in an 

exploratory examination of phenomena in nature (Clark & Watson, 1995). When 

sample sizes are relatively large, statistical significance is more likely, therefore good 

practice warrants an assessment of the effect associated with such significant findings 

(Cohen & Lea, 2004). The effect sizes were therefore generated for all post hoc 

analyses to determine the level of practicality whenever differences were detected in 

the data.  
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Table 43: Kruskal-Wallis test for the grouping variables flight deck position and 
size of carrier 
Behavioural scale Flight deck position N Mean rank Chi-

square 
df Asym. 

Sig. (2-
tailed) 
 

Organisational 
Professionalism 

Co-Pilot Long-Range 39 121.46    

Co-Pilot Short-Range 74 102.73 
Captain Long-Range 31 121.65 
Captain Short-Range 80 113.63 
Total (5 missing) 224  
   3.071 3 0.381 

Intrinsic 
Motivation 

Co-Pilot Long-Range 39 104.49    
Co-Pilot Short-Range 74 106.68 
Captain Long-Range 31 119.32 
Captain Short-Range 80 119.14 
Total (5 missing) 224  
   2.393 3 0.495 

Individual Control 
of Training 
Outcomes 

Co-Pilot Long-Range 39 107.62    
Co-Pilot Short-Range 74 113.97 
Captain Long-Range 31 78.39 
Captain Short-Range 80 126.74 
Total (5 missing) 224  
   12.847 3 0.005* 

Organisational 
Professionalism 

Size of carrier N Mean rank    
Large 135 126.37 
Medium 48 104.33 
Small 46 92.76 
Total 229  
   10.416 2 0.005* 

Intrinsic 
Motivation 

Large 135 117.72    
Medium 48 119.17 
Small 46 102.67 
Total 229  
   2.010 2 0.366 

Individual Control 
of Training 
Outcomes 

Large 135 113.48    

Medium 48 114.44 
Small 46 120.04 
Total 229  
   0.341 2 0.843 

*P < 0.05 
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Table 44: Mann-Whitney post hoc significance tests for the grouping variables 
flight deck position and size of carrier 
Behavioural 
scale 

Flight deck position 
 

N Mean 
Rank 

M-W U Z 2-tail 
Asymp. 
Sig. 
(effect 
size) 

Individual 
Control of 
Training 
Outcomes 

Captain Long-Range 31 39.98    
Captain Short-Range 80 62.21 
Total 111  
   743.5 -3.281 0.001* 

(0.31) 
All Short-Range 
Pilots 

154 120.60    

All Long-Range Pilots 70 94.67 
Total (5 missing) 224  
  

 
4 142.0 -2.791 0.005* 

(0.19) 

Co-Pilot Long-Range 39 40.06    
Captain Long-Range 31 29.76 
Total 70  
   426.5 -2.118 0.034* 

(0.26) 
All Co-Pilots 109 115.32    
All Captains 120 114.71 
Total 229  
   6 505.0 -0.070 0.944 

Behavioural 
Scale 

Size of carrier N Mean 
rank 

M-W U Z 2-tail 
Asymp. 

Sig. 
(effect 
size) 

 

Organisational 
Professionalism 

Larger operators 135 138.60    
Smaller operators 94 81.71    
Total 229     
   3202.0 -6.405 0.000* 

(0.42) 
*P < 0.05 
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A non-parametric comparison of the subgroups for  pilots’  flight  deck  positions showed 

that the behavioural scale Individual Control of Training Outcomes was statistically 

affected by one of four flight deck positions that a pilot may occupy [H(3) = 12.847, p < 

0.05]. The Mann-Whitney post hoc test was used to follow up on specific differences 

within the subgroups. The results show that short-range   captains’   scores   were 

statistically higher than those of their long-range counterparts (U = 743.50, p = 0.001). 

It appears that the captains on short-range aircraft in the present sample felt that they 

had more control than the group of long-range captains over their levels of comfort in 

training and the related learning outcomes for the advanced aircraft they operate. The 

effect of this significance is regarded as medium. One possible reason for this 

difference may be the fact that short-range pilots have opportunities to fly more sectors 

than long-range pilots (therefore, they fly with a higher frequency, resulting in more 

exposure to their aircraft). Familiarity with an aircraft is directly related to the number of 

take-offs  and  landings  performed  (experience),  and  can  therefore  improve  pilots’  levels  

of confidence and comfort in working with the technology.  

 

Similarly, there was a statistically significant difference between the mean ranked 

scores of all the short-range pilots and all the long-range pilots, but the effect is 

regarded as small (U = 4142, p < 0.05). Further examination of the long-range pilot 

group reveals that the co-pilots’   scores   were significantly higher than those of the 

captains (U = 465.50, p < 0.05, small effect). In general terms, captains have more 

overall flight experience. However, it appears that because a captain is normally a 

senior employee at an airline, much of a captain’s flight experience is accounted for on 

analogue type aircraft (older generation aircraft) as opposed to digital or glass flight 

deck aircraft (which are more recent acquisitions at airline organisations). This 

difference may have affected the final behavioural scale scoring, and reduced their 

levels of perceived personal confidence in the advanced aircraft training they receive 

or have received. 

 

Overall, pilots’   perceptions   on only the organisational professionalism scale were 

significantly affected by the size of the carrier where they were employed (H[2] = 

10.416, p < 0.01). An analysis of a further post hoc two grouping of the large, medium 

and small categories (where South African Airways combined with BA Comair were 

considered larger operators, whilst the others were considered smaller operators, as 
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defined in section 4.11), showed that perceptions of organisational professionalism 

were significantly affected (U = 3202.0, p < 0.001, medium effect). In addition, the 

order of the groupings (large, medium, small) was statistically significant (see Table 

43). The Jonckheere-Terpstra test showed that this pattern was meaningful in that, as 

the size of the carrier increased, scores on the latent behavioural scale focused on 

perceptions of Organisational Professionalism increased statistically (J-T[3] = 4403, 

Std. J-T[3] = -6.036, p < 0.001).  In other words, the larger the company in which the 

participant was employed, the more they would perceive their training as professional. 

 

Table 45: Kruskal-Wallis test for the grouping variable interaction effect between 
experience in advanced aircraft and computer literacy 

Behavioural scale Interaction effect N Mean 
rank 

Chi-
square 

df 2-tail 
Asymp.Sig
. 
 

Organisational 
Professionalism 

Low Experience*Low 
Computer Literacy 

19 76.00    

Low Experience*High 
Computer Literacy  

66 109.71 

High Experience*Low 
Computer Literacy  

73 130.42 

High Experience*High 
Computer Literacy 

71 114.49 

Total 229  
   10.972 3 0.012* 

Intrinsic Motivation Low Experience*Low 
Computer Literacy 

19 82.26    

Low Experience*High 
Computer Literacy 

66 125.74 

High Experience*Low 
Computer Literacy 

73 105.15 

High Experience*High 
Computer Literacy 

71 123.90 

Total 229  
   2.393 3 0.025* 

Individual Control of 
Training Outcomes 

Low Experience*Low 
Computer Literacy 

19 79.61    

Low Experience*High 
Computer Literacy 

66 138.09 

High Experience*Low 
Computer Literacy 

73 98.60 

High Experience*High 
Computer Literacy 

71 119.87 

Total 229  
   18.485 3  0.000* 

*P < 0.05 
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Table 46: Mann-Whitney post hoc significance tests for the grouping variable 
interaction effect between experience in advanced aircraft and computer literacy 

Behavioural 
scale 

Interaction effect N Mean 
rank 

M-W U Z 2-tail 
Asymp. 
Sig. 
(effect 
size) 
 

Organisational 
Professionalism  
 

Low Experience*High 
Computer Literacy 

66 63.39    

High Experience*Low 
Computer Literacy 

73 75.97 

Total 139  
   1973.0 -1.840  0.066 

Intrinsic 
Motivation 
 
 

Low Experience*High 
Computer Literacy 

66 76.86    

High Experience*Low 
Computer Literacy 

73 63.80 

Total 139  
   1956.5 -1.916 0.055 

Individual 
Control of 
Training 
Outcomes  
 

Low Experience*High 
Computer Literacy 

66 82.48    

High Experience*Low 
Computer Literacy 

73 58.72 

Total 139  
   1585.5 -3.492 0.000* 

(0.30) 
*P < 0.01 

 

Table 46 shows   that   overall,   the   effect   of   the   interaction   between   a   pilot’s   level   of  

experience in advanced aircraft and her or his perceived computer literacy, 

significantly  affects  the  pilot’s  perceptions  of  the  advanced  aircraft  training  climate  (p  <  

0.05). Additionally, the mean rank scores on the Individual Control of Training 

Outcomes (Factor 3 score) behavioural scale is significantly different between pilots 

who reported low experience in advanced aircraft, combined with a high level of 

computer literacy (Mean Rank = 82.48) and the scores of pilots who reported high 

experience in advanced aircraft, combined with a low level of computer literacy (Mean 

Rank = 58.72).  

 

The effect of the difference between pilots who reported low experience in advanced 

aircraft, combined with a high level of computer literacy, was regarded as medium 

(U=1585.5, p < 0.001; r = 0.30), and may have important consequences for airline 

training organisations. It appears that many hours of flight experience alone is not 

necessarily an important attribute in learning to operate the most advanced 

commercial aircraft. Organisations should consider that technologically averse 

individuals might have difficulty training for advanced automated aircraft.  
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It  appears   that   the   trainees’  perceptions of their own computer literacy have a much 

larger influence in terms of interacting with pilots’   flight  experience levels at whether 

they feel that they may have more control of their training outcomes. More in-depth 

post hoc analysis on this interaction effect is reported in an analysis of the general 

linear model in Section 5.9.  

 

Further examination of the rating on the computer literacy that the participants 

allocated to themselves was necessary. The results set out in Table 47 indicate that 

pilots’   levels   of   computer   literacy   (poor,   average,   above   average,   excellent)  

significantly affects their Intrinsic Motivation and Individual Control of Training 
Outcomes regarding training for flying advanced technology aircraft (H[3] = 13.291, 

19.450, p < 0.05). A significant difference was found between the mean ranked scores 

of pilots who perceived their computer literacy as low and the scores of those who 

perceived their computer literacy as higher (U=4961.0, 4432.5, p < 0.01, small to 

medium effect). Once again, these results show the importance of basic computer 

skills  and  competence  in  technology  for  trainees’  perceptions  of  their  training  for  flying  

advanced aircraft (see Table 47). 

 

It was also necessary   to  explore  whether  a  pattern  existed   in  participants’  perceived  

levels of computer literacy in terms of their learning for new technology aircraft. The 

Jonckheere-Terpstra test suggests that the order of computer literacy ratings (poor, 

average, above average, excellent) is statistically significant on the two behavioural 

scales at the individual level of analysis labelled Intrinsic Motivation and Individual 
Control of Training Outcomes (J-T[4] = 10178.50, 10888.0; Std. J-T[4] = 2.948, 4.272; 

p < 0.01).  

 

These   results   attest   that   as   pilots’   perceived   levels   of   computer   literacy   increase   or  

improve, so too will their motivation to learn about new technology aircraft, and this 

affects their personal feelings about their ability to control the outcomes related to their 

training for flying advanced aircraft. 
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Table 47: Kruskal-Wallis test for the grouping variable computer literacy 
Behavioural scale 

 

Computer literacy N Mean rank Chi-

square 

df 2-tail 

Asymp. 

Sig. 

Organisational 
Professionalism 

Poor 5 99.10    
Average 87 120.34 

Above average 92 110.92 

Excellent 45 114.78 

Total 229  

   1.202 3 0.752 

Intrinsic Motivation Poor 5 32.90    
Average 87 104.30 

Above average 92 122.76 

Excellent 45 128.94 

Total 229  

   13.291 3 0.004* 

Individual Control of 
Training Outcomes 

Poor 5 45.40    
Average 87 97.51 

Above average 92 123.25 

Excellent 45 139.68 

Total 229  

   19.450 3 0.000* 

*P < 0.01 

 

Table 48: Mann-Whitney post hoc significance tests for the grouping variable 
computer literacy 

Behavioural scale Computer literacy N Mean 
rank 

M-W U Z 2-tail 
Asymp. 
Sig. 
(effect 
size)  

Intrinsic Motivation  Low Competence 92 100.42    
High Competence 137 124.79 
Total 229  
   4961.0 -2.738 0.006* 

(0.18) 
Individual Control of 
Training Outcomes 

Low Competence 92 94.68    
High Competence 137 128.65 
Total 229  
   4432.5 -3.823 0.000* 

(0.25) 
*P < 0.01 
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Table 49 presents the aircraft that pilots operated according to manufacturer name. It 

shows that, overall, the type of aircraft operated by the pilot statistically affected their 

behaviour on the Organisational Professionalism scale and the Individual Control of 
Training Outcomes scale (p < 0.05). Furthermore, Table 49 clearly shows that when 

one compares the  two  largest  subgroups  that  operate  one  of  the  main  manufacturers’  

advanced aircraft (Boeing or Airbus), there is a significant difference in the pilots’  

scores on their Individual Control of Training Outcomes with regard to the climate for 

training on these aircraft (U=2181.5, p < 0.05, small effect). It appears that the Boeing 

pilots in the sample felt that they were more in control of their training outcomes than 

the Airbus pilots for this sample did. However, the effect of this difference should be 

regarded as small and needs to be interpreted with caution. It is recommended that 

this phenomenon be explored using a larger sample in future in order to obtain a more 

accurate effect size level. 
 

Table 49: Kruskal-Wallis test for the grouping variable manufacturer 

Behavioural scale Manufacturer N Mean rank Chi-
square 

df 2-tail 
Asymp. 
Sig. 

Organisational 
Professionalism 

Boeing 57 131.85    
Airbus 95 129.53 
Embraer 11 33.23 
Canadair 9 87.44 
De Havilland 7 103.93 
Other 50 92.69 
Total 229  
   32.454 5 0.000* 

Intrinsic Motivation Boeing 57 108.18    
Airbus 95 116.41 
Embraer 11 84.09 
Canadair 9 103.50 
De Havilland 7 119.86 
Other 50 128.30 
Total 229  
   5.403 5 0.369 

Individual Control of 
Training Outcomes 

Boeing 57 125.21    
Airbus 95 104.15 
Embraer 11 86.00 
Canadair 9 90.39 
De Havilland 7 139.00 
Other 50 131.42 
Total 229  

   11.357 5 0.045* 

*P < 0.05 
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Table 50: Mann-Whitney post hoc significance test for the grouping variable 
manufacturer  

Behavioural scale Manufacturer N Mean rank M-W U Z 2-tail 
Asymp. 
Sig. 
(effect 
size) 

Organisational 
Professionalism 

Boeing 57 78.68    
Airbus 95 75.19 
Total 152  
   2583.5 -0.472 0.637 

Individual Control of 
Training Outcomes 

Boeing 57 85.73    
Airbus 95 70.96 
Total 152  

   2181.5 -2.014 0.044* 
(0.16) 

*P < 0.05 

 

Table 51: Kruskall-Wallis test for the grouping variables of initial (ab initio) 
training 

Behavioural scale Initial training N Mean rank Chi-
square 

df 2-tail 
Asymp. 
Sig. 
 

Organisational 
Professionalism 

Military 81 127.39    
Cadet 18 101.92 
Self-sponsored 
(part-time) 

64 118.45 

Self-sponsored 
(full-time) 

64 96.00 

Total (2 missing) 227  
   9.083 3 0.028* 

Intrinsic Motivation Military 81 117.94    
Cadet 18 96.86 
Self-sponsored 
(part-time) 

64 115.93 

Self-sponsored 
(full-time) 

64 111.90 

Total (2 missing) 227  
   1.650 3 0.648 

Individual Control of 
Training Outcomes 

Military 81 109.93    
Cadet 18 100.53 
Self-sponsored 
(part time) 

64 116.55 

Self-sponsored 
(full-time) 

64 120.39 

Total (2 missing) 227  
   1.789 3 0.617 

*P < 0.05 
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Table 51 and Table 52 suggest   that   a   pilot’s   initial   or   ab initio flying training can 

significantly affect his or her perceptions of the advanced aircraft training climate at his 

or her airline with regard to the behavioural scale Organisational Professionalism [H(3) 

= 9.083, p < 0.05]. Ab initio training is defined as primary training, which a potential 

pilot undergoes when first entering the aviation industry (Moore et al., 2001). 

 

The results indicate that there is a significant difference between the scores of those 

pilots who had military training (Mean Rank = 127.39) and the scores of pilots who had 

no military background (Mean Rank = 106.57) with regard to their views of 

Organisational Professionalism (U = 4828.5, p < 0.05).  

 

Table 52 shows that, in terms of whether the candidate underwent a structured early 

training experience (that is an airline cadetship or military background) or an 

unstructured one (that is, participants who indicated that their primary training was 

concluded after self-sponsored or part-time methods), there was no impact on their 

perceptions of the advanced aircraft training climate with regard to the Organisational 
Professionalism scale.  

 

It may be deduced from the results in Table 52, that having only a regimented, 

structured training background, as in the case of military trained pilots, may influence 

the   candidate’s   perception   of   the   professionalism   associated   with   training   for  

advanced aircraft. Although this information is useful, the practical significance of the 

differences in these categories should nevertheless be regarded as small, in terms of 

Cohen’s  (1988)  criteria.   

 

The discovery of the aforementioned effects between selected independent 

demographic variables and the latent factors of the main measurement construct was 

used as a basis for a further exploration of the possible phenomena that may exist in 

the dataset.  
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Table 52: Mann-Whitney post hoc significance test for the grouping variable 
nature of initial training  

Behavioural 

scale 

Nature of Initial 

training 

N Mean 

rank 

M-W U Z 2-tail 

Asymp. 

Sig. 

(effect 

size) 

Organisational 
Professionalism 

Structured training 99 122.76    

Unstructured training 128 107.23 

Total (2 missing) 227  

   5 469.0 -1.767 0.077 

Military-trained 81 127.39    

Not military-trained 146 106.57 

Total (2 missing) 227  

   4 828.5 -2.289 0.022* 

(0.15) 

*P < 0.05 

 

 

5.8 ASSOCIATIONAL STATISTICS: NON-PARAMETRIC MEASURES OF 
BIVARIATE RELATIONSHIPS 

 

The general term explaining the concept of variable relationship is that, information 

about one variable is usually carried by the other variable in many instances (Cohen, 

Cohen, West & Alken, 2003). Exploiting the bivariate associational relationship 

between paired variables enhanced the exploration of the data set.  

 

To assess the relationship or extent to which variables may be related and to 

determine the magnitude and subsequent direction of the possible relationship, a 

correlational analysis was conducted. Because the items were designed to comply 

with   Likert’s   (1932)  method,   data  were   considered   at   least   ordinal   in   nature. It was 

found   that  Pearson’s  coefficient  would  be  unsuitable   for   the  current   study’s  data,   as  

Pearson’s   formula   is   problematic  where there are violations of normality or unequal 

variances. The difference in the non-parametric equivalent of the Pearson coefficient 

lies in the type of data that are used (Cohen & Lea, 2004; Comrey & Lee, 1992; Field, 
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2009). The non-parametric equivalent to   Pearson’s   correlation coefficients is 

calculated by applying the formula to the ranks of the data, as opposed to applying it to 

the raw data values.  

 

Kendall’s  tau-b was used as a measure of association between the variables chosen 

(Kendall & Stuart, 1963).   Kendall’s   method   was selected for its robustness in 

measuring the strength of the association between two ordinal or binary variables 

(Morgan et al., 2007). The Kendall tau-b   (τ)   statistic   was   also   used   because   the  

computation allows for adjustments for ties (here, the geometric mean is used as an 

estimate  of  the  relevant  tied  pairs).  Kendall’s  tau-b is  equivalent  to  Spearman’s  rho  in  

terms of the underlying assumptions, and tau “has   been   emphasized   recently   as   a  

substitute for r in   various   research   contexts”   (Walker, 2003:525). However, 

Spearman’s  rho  and  Kendall’s  tau  are  not  identical  in  magnitude,  since  their  underlying  

logic and computational formulae are relatively different (Kendall & Stuart, 1963; 

Gravetter & Wallnau, 2008). Relational strengths were thus found to be more 

conservative under the tau statistic.  

 

When  the  associational  process  was  replicated  using  Spearman’s  formula,  statistically 

relevant strengths of association between variables were stronger to some extent (not 

reported  here).  Nonetheless,  Kendall’s  formula  was  maintained  for  final  computations 

and drawing conclusions in this thesis. The relationship between two measures using 

Kendall’s  tau  formula  is  based  on  the  goodness-of-fit of the least squares straight line; 

however, this correlation simply provides some evidence of a relationship and will 

therefore never prove causality per se (Tabachnick & Fidell, 2007). Cohen and Lea 

(2004) suggest a cut-off point of 0.30 (a medium effect size) for the practical 

significance of association. 

 

The three main components of the construct under study were correlated with some 

core demographic data (see Table 53).  
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Table 53: Main demographic and factor correlations 
Kendall’s  tau-b Flight 

deck 
position 

Interact_ 
Group 

Adv. 
Aircraft 
Exp. 

Age Gender Level of 
education 

Level of 
computer 
literacy 

Pilot 
unionisa-
tion 

Size of 
carrier 

Instruc-
tor 
rated 

F1 F2 F3 

Flt deck 
position 

1.000 0.060 0.066 0.328** 0.128* 0.145* 0.000 0.176** 0.216** 0.057 0.003 0.075 0.068 

Sig (2-tailed) . 0.291 0.283 0.000 0.038 0.019 0.995 0.004 0.000 0.353 0.949 0.151 0.199 
Interact_Group  0.060 1.000 0.810** 0.293** 0.060 -0.006 0.193** -0.348** -0.364** 0.069 0.082 0.053 -0.004 
Sig (2-tailed) 0.291 . 0.000 0.000 0.325 0.918 0.002 0.000 0.000 0.262 0.104 0.307 0.941 

Adv. Aircraft 
Exp.  

0.066 0.810** 1.000 0.413** 0.058 -0.011 -0.279** -0.442** -0.452** 0.039 0.123* -0.010 -0.100 

Sig (2-tailed) 0.283 0.000 . 0.000 0.379 0.863 0.000 0.000 0.000 0.557 0.024 0.857 0.077 

Age  0.328** 0.293** 0.413** 1.000 0.206** 0.122 -0.211** -0.210** -0.192** 0.035 0.143** 0.016 -0.050 
Sig (2-tailed) 0.000 0.000 0.000 . 0.002 0.065 0.001 0.002 0.002 0.596 0.009 0.781 0.372 
Gender  0.128* 0.060 0.058 0.206** 1.000 0.009 0.040 -0.002 0.045 0.048 0.072 0.097 0.038 
Sig (2-tailed) 0.038 0.325 0.379 0.002 . 0.889 0.548 0.974 0.472 0.470 0.185 0.083 0.507 

Level of 
education 

0.145* -0.006 -0.011 0.122 0.009 1.000 -0.011 0.033 -0.013 0.154* 0.031 0.046 0.037 

Sig (2-tailed) 0.019 0.918 0.863 0.065 0.889 . 0.864 0.622 0.839 0.020 0.576 0.409 0.513 
Level of  
com, literacy 

0.000 0.193** -0.279** -0.211** 0.040 -0.011 1.000 0.133* 0.126* 0.054 -0.043 0.153** 0.216*

* 
Sig (2-tailed) 0.995 0.002 0.000 0.001 0.548 0.864 . 0.044 0.047 0.414 0.433 0.006 0.000 
Pilot 
unionisation 

0.176** -0.348** -0.442** -0.210** -0.002 0.033 0.133* 1.000 0.854** -0.025 -0.319** -0.068 -0.010 

Sig (2-tailed) 0.004 0.000 0.000 0.002 0.974 0.622 0.044 . 0.000 0.704 0.000 0.222 0.862 
Size of carrier 0.216** -0.364** 0.452** -0.192** 0.045 -0.013 0.126* 0.854** 1.000 -0.012 -0.315** -0.091 -0.027 
Sig (2-tailed) 0.000 0.000 0.000 0.002 0.472 0.839 0.047 0.000 . 0.843 0.000 0.089 0.614 
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Kendall’s  tau-b Flight 
deck 
position 

Interact_ 
Group 

Adv. 
Aircraft 
Exp. 

Age Gender Level of 
education 

Level of 
computer 
literacy 

Pilot 
unionisa-
tion 

Size of 
carrier 

Instruc-
tor 
rated 

F1 F2 F3 

Instructor rated 0.057 0.069 0.039 0.035 0.048 0.154* 0.054 -0.025 -0.012 1.000 -0.023 0.050 0.111 
Sig (2-tailed) 0.353 0.262 0.557 0.596 0.470 0.020 0.414 0.704 0.843 . 0.677 0.370 0.050 
Organisational 
Professionalism 
(F1) 

0.003 0.082 0.123* 0.143** 0.072 0.031 -0.043 -0.319** -0.315** -0.023 1.000 0.351** 0.448*

* 

Sig (2-tailed) 0.949 0.104 0.024 0.009 0.185 0.576 0.433 0.000 0.000 0.677 . 0.000 0.000 

Intrinsic 
Motivation (F2) 

0.075 0.053 -0.010 0.016 0.097 0.046 0.153** -0.068 -0.091 0.050 0.351** 1.000 0.396*

* 

Sig (2-tailed) 0.151 0.307 0.857 0.781 0.083 0.409 0.006 0.222 0.089 0.370 0.000 . 0.000 

Individual 
Control of 
Training 
Outcomes  
(F3) 

0.068 -0.004 -0.100 -0.050 0.038 0.037 0.216** -0.010 -0.027 0.111 0.448** 0.396** 1.000 

Sig (2-tailed) 0.199 0.941 0.077 0.372 0.507 0.513 0.000 0.862 0.614 0.050 0.000 0.000 . 

 
** p < 0.001;  
* p < 0.05;  
τ s < 0.10 suggests no effect;  
τ s ≥  0.10  suggests  a  small  effect;;   
τ s ≥  0.30  suggests  a  medium  effect;;  and   
τ s ≥  0.50  suggests  a  large  effect 
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The correlation results depicted in Table 53 indicate that, for the present sample, the 

phenomena discussed below were noteworthy. 

 

The position of the crewmember on the flight deck (either captain or co-pilot) is 

significantly   correlated  with  age   (τs = 0.328, p < 0.001, medium effect). Due to the 

very rigid seniority systems entrenched at the larger and unionised carriers in South 

Africa, a pilot is only eligible for command (a captain upgrade) after serving a 

prerequisite number of years in the organisation. The data therefore reflects this 

correlation. The results also show a small effect size in the relationship between a 

respondent’s   flight   deck   position   and   his   or   her level   of   education   (τs = 0.328, 

p < 0.001). The data indicated that it is to be expected that, as a pilot gains 

experience   and   becomes   more   senior   at   an   airline,   the   pilot’s   educational  

qualifications will improve.  

 

The interaction effects between pilots’  overall experience level on advanced aircraft 

and their perceived levels of computer literacy are significantly related to the ages of 

the  pilots  (τs = 0.293, p < 0.001, medium effect). This correlation suggests that levels 

of the experience-computer literacy interaction for this sample improved with the age 

of the pilots. It may therefore be relevant that older pilots who undergo advanced 

aircraft transition training have a vast amount of previous experience in advanced 

aircraft, together with better perceived computer literacy, and that this tends to 

improve their training experience. Similarly, it is intuitively logical to conclude that as 

people spend more years in an airline, they both age, and are likely to gain 

experience. However, levels of computer literacy do not display the same linear 

relationship. Therefore, older pilots may require higher levels of computer literacy or 

ability in order to report an improved perception of the advanced aircraft training they 

undergo.  

 

The level of advanced aircraft flight experience of pilots in the sample was inversely 

related to their level of computer literacy (τs = -0.279, p < 0.001, medium effect), the 

degree to which the pilot group was unionised  (τs = -0.442, p < 0.001, medium effect) 

and  the  size  of  the  organisation  (τs = -0.452, p < 0.001, medium effect). A surprising 

correlation in the data suggests that the more experience a pilot had in advanced 

aircraft, the less likely the pilot was to believe that he or she had good levels of 
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computer literacy. This result may also be related to the effect of age on perceived 

levels of computer literacy, in that younger pilots tended to have more positive 

perceptions of their computer literacy (τs = -0.211, p < 0.001, small to medium effect). 

It appears that the older pilots (over the age of 40 years) have had more experience 

on   advanced   aircraft   (τs = 0.413, p < 0.001), but less experience with commercial 

technology. This particular generation did not have as much exposure to computer-

based technology while growing up as the younger generation has had (Moore, 

2003). This  effect  is  also  related  to  a  respondent’s  number  of  years  of employment at 

the organisation.  

 

Higher levels of computer literacy were significantly associated with greater pilot 

unionisation  (τs =  0.133,  p  <  0.05,  small  effect)  and  organisational  size  (τs = 0.126, p 

< 0.05). These results suggest that the larger, unionised carriers employ pilots who 

perceive their levels of computer literacy to be relatively good. The results may also 

be related to the fact that one large unionised carrier in the sample issues personal 

laptop computers to its pilots. Such   a   pilot’s   familiarity   with   this   item   may then 

influence the pilot’s  perception  of  his  or  her   computer   literacy.  Another  explanation 

may be that, because pilots at highly unionised carriers command more earnings 

from complex negotiated agreements (Olney, 1996), they are more likely to be able 

to afford and enjoy the latest technologically advanced personal gadgets, such as 

laptops and tablet computers. Thus, these pilots are less likely to be averse to 

technology.  

 

Greater unionisation of airline pilots is significantly related to high experience levels 

in  advanced  aircraft  (τs = 0.442, p < 0.001, medium effect). This was expected, as the 

large carriers generally hire the most experienced pilots in the industry. Unionised 

carriers are also more attractive to experienced pilots because of their strict seniority 

lists and benefits such as pensions and protection against a loss of their licences 

(Olney, 1996). Larger carriers in South Africa are known to operate the more 

advanced technology aircraft from the two main global aircraft manufacturers, Airbus 

and Boeing, which produce larger aircraft, flying longer distances. Pilots at the 

bigger, unionised carriers also fly higher frequency schedules, providing their pilots 

with an opportunity to gain more experience. Consequently, it was observed that in 

South Africa highly unionised carriers are significantly related to larger employers  (τs 
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= 0.854, p < 0.001, large effect). These effects have important implications for 

smaller, non-unionised organisations. Such organisations are more likely to have 

inferior advanced aircraft training capability in terms of the perceptual behavioural 

scales, and therefore more effort should be made by these companies’  management 

to ensure effective and efficient transfer of knowledge to their pilots, especially 

because inadequate training paradigms, structure and methodology can have an 

adverse impact on flight safety. 

 

The latent factor Organisational Professionalism was positively related to 

a respondent’s  experience   in  advanced  aircraft   (τs =  0.123,  p  <  0.05)  and  age  (τs = 

0.143, p < 0.001). However, the effect size of this relationship was considered small. 

Similarly, the latent construct Intrinsic Motivation was positively associated with a 

pilot’s  level  of  computer   literacy (τs = 0.153, p < 0.001, small effect), which suggests 

that when these airline pilots perceive their computer literacy levels as improving, 

they may also have a greater interest in training for new technology. Furthermore, the 

third latent construct, Individual Control of Training Outcomes, was similarly 

correlated  with  pilots’   perceptions  of   their   computer   literacy (τs = 0.216, p < 0.001, 

small effect). This result indicates that as pilots begin to believe that their levels of 

computer literacy are relatively good, so too will their perceptions of their ability to be 

in control of, and to take charge of their advanced aircraft training outcomes.  

 

The correlation matrix in Table 53 also shows that the three latent behavioural scales 

of the main measurement construct correlate with each other to a high degree (p < 

0.001). This was expected because the construct was developed in terms of the 

systemic principle and factors derived from an oblique rotation. The tau inter-

correlation coefficients for the factors ranged from 0.351 to 0.448.  

 

Overall, the results of the non-parametric associational analysis should be interpreted 

within the present context and with a degree of caution. The non-parametric methods 

are considered more robust than parametric methods. Nonetheless, it was observed 

there were many   low   to  medium  effect   sizes,   according   to  Cohen’s   (1988)   criteria, 

representing the overall effectiveness of significant associations. This indicates that 

many of the significant results can be dismissed from a practicality perspective. 

Again, however, effect sizes may also bear the brunt of a certain level of criticism for 
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being subjectively broad in terms of unilaterally lessening the impact of a study, 

which Ellis (2010:230) dismisses as categorising significances according to “T-shirt 

sizes”. Nevertheless, it was necessary to understand why the data yielded such low 

to medium effect sizes. It was summarily hypothesised then, that one reason for this 

result might be from the impact of the relatively tiny and highly homogeneous sample 

frame and subsequent non-normality of the data set. These results pointed to areas 

for further exploration. Because of the lack of total clarity from this associational 

analysis, the aforementioned results were then used to guide further multivariate and 

regression statistical analyses, as discussed in the sections below. 

 

5.9 NON-PARAMETRIC MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) 
 

“Generalized   linear  models   provide   a   unified   theoretical   and   conceptual   framework 

for   many   of   the   most   commonly   used   statistical   methods”   (Dobson & Barnett, 

2008:15). To examine the main and interactional effects of partially independent 

categorical variables on multiple dependent variables, a MANOVA was conducted by 

means of the general linear model (Anderson, 2001; Field, 2005). In this case, the 

dependent variables (factors) were conceptually related to a high degree. The risk of 

multicollinearity should be considered when correlations between the dependent 

variables are generally high, while conversely no correlation would imply that a 

multivariate analysis could be   “pointless”   (Leech   et al., 2005:177). A moderate 

median ranked correlation of 0.40 between the dependent variables was calculated, 

based  on  Kendall’s   tau-b from an earlier associational exploration (τ,  which  makes  

adjustments for ties). This indicated that an analysis of a general linear model was 

indeed useful. 

 

Based on a combination of the dependent variables, the general linear model 

procedure was used to compute a multivariate F.  “The  larger  the  value of F, the more 

likely it is that the null hypothesis (H0) of no differences among the group means 

(locations)   is   false”   (Anderson,   2001:34). The combination maximised the 

differentiation of the ordinal dependent variable groups. This procedure was followed 

to provide an analysis for effects on a linear combination of three dependent 

variables of multiple independent variables, or covariates. A MANOVA was computed 

to test the differences in the centroid or vector of medians of the multiple 

 
 
 



- 265 - 

interval/ordinal dependent variables, for various categories of the independent 

variables. Because the Type I error rate of the standard MANOVA test statistics can 

be inflated, whereas their power attenuates when assumptions of normality and 

homogeneous covariance matrices are violated (Holmes, 2005), a non-parametric 

MANOVA was  computed.  Both  Box’s  M-test (p = 0.001), which was used to assess 

the homogeneity of the variance-covariance matrices of the independent variables, 

and   Levene’s   test   of   the   equality   of   error   variances in two of the three dependent 

variables were markedly violated (see Table 54).  

 

Furthermore, assumptions on the dependent variable had to be considered as 

deviating from normality, because in a MANOVA, there is no single dependent 

variable as such, but rather a column matrix or vector of scores on each dependent 

variable. 

 

Table 54: Tests for assumptions of normality and homogeneity 

Levene’s  test  of  equality  of  error  variances 
Ranked dependent factor or scale F df1 df2 Sig. 

Organisational Professionalism  
(Factor 1) 

1.462 51 177 0.037 

Intrinsic Motivation  
(Factor 2) 

1.938 51 177 0.001 

Individual Control of Training Outcomes 
(Factor 3) 

1.281 51 177 0.122 

Box’s  M-test  
273.269 1.426 138 3699.387 0.001 

 

In this situation (as portrayed in Table 54), a non-parametric or rank-order variant of 

the MANOVA was an appropriate option, as proposed by Zwick (1985). Original or 

raw observations were transformed by ranking the subjects on each of the dependent 

variables. The ranks were then subjected to a conventional MANOVA. However, the 

required test statistic in this case was equal to (N-1)V, where V is the Pillai-Bartlett 

statistic computed on the transformed data (Zwick, 1985). Five independent variables 

based on a previous theoretical premise and earlier associational analysis, together 

with appropriate strengths of association (phi), were selected and tested. A 
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breakdown of the frequencies in terms of the independent categories is provided in 

Table 55.  

 

To guide an examination and interpret the differences between the vectors of the 

mean ranked scores between groups, the following situation was subsequently 

investigated:  

What are the phenomena that affect airline pilots who differ in  

 

 age (40 years and younger, or over 40 years);  

 level of digital flight time experience (where high experience meant 2001 hours or 

more on advanced aircraft, and low experience meant 2000 hours or less); 

 company status (captain or co-pilot); 

 size of carrier (employed at a large, medium or small company); and  

 level of computer literacy (poor, average, above average, excellent)  

 

on some linear combination of the three dependent factors (Organisational 
Professionalism, Intrinsic Motivation and Individual Control of Training Outcomes). In 

addition, interaction between the demographic levels in a distinguishing linear 

combination of the dependent variables was examined. The number of respondents 

in each category was collapsed and is depicted in Table 55. 

 

Table 55: Frequency of between-subjects factors 

Independent demographic grouping Sub-grouping Valid N 
Age category 
 

40 and under 119 
41 and over 110 
  

Level of digital flight time experience 
 

High digital 144 
Low digital 85 

  
Company status Captain 120 

Co-pilot 109 
Size of carrier Large 135 

Medium 48 
Small 46 

Computer literacy 
 

Poor 5 
Average 87 
Above average 92 
Excellent 45 
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The results of the non-parametric MANOVA of the five demographic variables in 

terms   of   the   respondents’   perceptions   of   the   training   climate associated with 

advanced aircraft are set out in Table 56. 

 

Table 56: Omnibus Pillai-Bartlett multivariate test of significance 
Effect Value F Hypo-

thesis 

df 

Error 

df 

Sig. Partial 

eta 

squared 

Observed 

power 

Intercept 

 

Pillai-

Bartlett   

Trace 

0.618 94.182 3 175 0.000 0.618 1.000 

Age category 

 

Pillai-

Bartlett   

Trace 

0.012 0.721 3 175 0.540 0.012 0.202 

Digital flight 

experience 

 

Pillai-

Bartlett   

Trace 

0.026 1.533 3 175 0.208 0.026 0.400 

Company status 

 

Pillai-

Bartlett   

Trace 

0.012 0.681 3 175 0.565 0.012 0.192 

Size of carrier 

 

Pillai-

Bartlett   

Trace 

0.194 6.311 3 352 0.000 0.097 0.999 

Computer literacy 

 

Pillai-

Bartlett   

Trace 

0.125 2.555 3 531 0.007 0.042 0.940 

Digital flight 

experience* 

Computer literacy 

Pillai-

Bartlett   

Trace 

0.149 3.090 3 531 0.001 0.050 0.976 

 

 

The multivariate Pillai-Bartlett table tests the hypothesis that airline pilots, based on 

the selected demographics, do not differ significantly in terms of their overall 

perception of the advanced aircraft training climate. The result of the MANOVA 

depicted in Table 56 indicates that age of the respondents (F = 0.721; p = 0.540), 

digital flight experience (F = 1.533; p = 0.208) and whether the respondent was a 

captain or first officer (F = 0.681; p = 0.565) had no noticeable effect. 
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Then again, the size of the carrier in  which  the  respondent  is  employed,  the  person’s  
level of computer literacy and digital flight experience*computer literacy interaction 

have a substantive effect on  the  respondents’  perceptions. For all three effects, the 

observed significance level for the Pillai-Bartlett test was at a 0.01 level of 

significance. 

 

It appears that the size of the carrier (company) is possibly the most important 

independent variable in the model, combined with a high, observed power, indicating 

that the chance of failing to detect an effect that is present is less than a 1% (Arrindell 

& Van der Ender, 1985; Cohen, 1988). The Pillai-Bartlett trace was equal to 0.194, 

with an associated F (3, 229) = 6.311, p < 0.001 (Table 56). The squared eta of 

0.097 indicates that the size of the carrier explained almost 10% of the variance in 

the specified model. The chi-square test statistic furthermore confirmed the inequality 

of the location of the median ranked scores of the three subgroups for the size of the 

company [2 (3) = 1438.908, p < 0.001].  

 

The  effect  of   respondents’  digital flight experience*computer literacy interaction (the 

multivariate Pillai-Bartlett’s   trace   was 0.149; F [3, 229] = 3.090; p < 0.001) was 

significant, with a high observed power, providing only a 2% chance of failing to 

detect an effect which exists (Arrindell & Van der Ender, 1985; Cohen, 1988, Zwick, 

1985).   This   indicates   that   the   practical   implications   of   subjects’   experience   in  

advanced aircraft with regard to their perception of the advanced aircraft training 

climate was highly dependent on their level of computer literacy.   

 

The chi-square test statistic also confirmed the inequality of the localities of the 

median ranked scores for the following subgroups of the digital flight 
experience*computer literacy interaction [2 (3) = 33.972, p < 0.001]:  

 low advanced aircraft experience and poor, or average, or above average or 

excellent computer literacy (four subgroups); and 

 high advanced aircraft experience and poor, or average, or above average or 

excellent computer literacy (four subgroups). 
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Overall,   it   appears   that   airline   pilots’   perceived   levels   of   computer   literacy   had a 

significant effect on their experiences with the advanced aircraft training climate 

(multivariate Pillai-Bartlett’s  trace  =  0.125;;  F  [3,  229]  =  2.555; p < 0.01). In addition, 

the chi-square test statistic also confirmed the inequality of the location of the median 

ranked scores for the four subgroups of computer literacy [2 (3) = 28.5, p < 0.001].  

 

5.9.1 Between-subjects effects 
 

To determine exactly where the variations in the median ranked centroids were for 

each of the subgroups, across the three latent behavioural factors (Organisational 
Professionalism, Intrinsic Motivation, and Individual Control of Training Outcomes), it 

was necessary to proceed with an analysis of between-subjects effects. The 

examination was based on the results of the significance tests, and effect sizes were 

determined   using   Cohen’s   (1988)   criterion   of the partial eta squared (η2). The 

recommendation for practical significance, based on this computation, is that there is 

a  small  effect  size  when  η2 =  0.01  (1%),  a  medium  effect  size  when  η2 = 0.06 (6%) 

and  a  large  effect  size  when  η2 = 0.15 (15%). The between-subjects effects was only 

examined for significant differences with regard to the size of the carrier, computer 

literacy  and  the  interactive  effect  of  digital   flight  experience  combined  with  subjects’  

levels of computer literacy. For the size of the carrier, the results show that 

respondents’  perceptions  of  the  advanced  aircraft  training  climate  was  significant  (p  <  

0.001 with a medium effect) only for the Organisational Professionalism behavioural 

scale. The size of the carrier in which the pilot is employed appears to account for 

13.9% of  the  variability   in  the  pilot’s  perception  of   the  professionalism  in  training  for  

advanced aircraft. No statistically significant differences (p = 0.724) were noted 

between airline  pilots’  levels  of  computer  literacy  and their median ranked scores on 

the Organisational Professionalism scale. However, trainee’s   level   of   computer  

literacy had a small to medium effect  (η2 =  0.047  to  0.072)  on  the  trainee’s  judgement  

on the Intrinsic Motivation and Individual Control of Training Outcomes scales 

respectively. Therefore, approximately 7.2% of the variance in the airline   pilots’  

perceptions of their ability to control an outcome of training for advanced aircraft was 

related to their perceived level of computer literacy. These results show that 

information regarding computer skill and competence can be very useful in practical 

situations, such as airline pilot recruitment. To a recruiter, this may indicate a 
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candidate’s understanding, easiness and aptitude to operate advanced technology, 

which may in turn enhance a   pilot’s ability to learn successfully, and confidently 

operate the modern digital aircraft. 
 

Table 57: Significance tests for between-subjects effects for Factors 1, 2 and 3 
Source Dependent 

variable 
df Mean square F Sig. Partial 

eta 
squared 

Observ
ed 

power 

Effect 
size 

(Cohen, 
1988) 

Corrected 
Model 

Organisational 
Professionalism 

51 8 661.756 2.746 0.000 0.442 1.000 Large 

 Intrinsic 
Motivation 

51 6 932.425 1.916 0.001 0.356 1.000 Large 

 Individual Control 
of Training 
Outcomes 

51 6 991.335 1.952 0.001 0.360 1.000 Large 

Intercept Organisational 
Professionalism 

1 51 0716.861 161.885 0.000 0.478 1.000 Large 

 Intrinsic 
Motivation 

1 69 4995.446 192.101 0.000 0.520 1.000 Large 

 Individual Control 
of Training 
Outcomes 

1 71 9711.892 200.957 0.000 0.532 1.000 Large 

Size of 
carrier 

Organisational 
Professionalism 

2 45 077.610 14.289 0.000 0.139 0.999 Medium 

 Intrinsic 
Motivation 

2 333.460 0.092 0.912 0.001 0.064  
Insig. 

 Individual Control 
of Training 
Outcomes 

2 1 827.355 0.510 0.601 0.006 0.133  
Insig. 

Computer 
literacy 

Organisational 
Professionalism 

3 1 391.231 0.441 0.724 0.007 0.137  
Insig. 

 Intrinsic 
Motivation 

3 10 429.173 2.883 .037 0.047 0.681 Small 

 Individual Control 
of Training 
Outcomes 

3 16 458.487 4.596 0.004 0.072 0.884 Medium 

Level of 
digital flight 
time 
experience * 
Computer 
literacy 

Organisational 
Professionalism 

3 11 045.181 3.501 0.017 0.056 0.773 Small 

 Intrinsic 
Motivation 

3 19 322.494 5.341 0.002 0.083 0.929 Medium 

 Individual Control 
of Training 
Outcomes 

3 26 389.302 7.368 0.000 0.111 0.984 Medium 
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Finally, Table 57 shows that the level of interaction between Digital flight time 

experience and Computer   literacy,   significantly   affects   pilots’   perceptions   of   the  

training climate associated with advanced aircraft training. The analysis of between-

subjects effects show a significant relationship (p = 0.05 to 0.001) between Digital 

flight experience*Computer literacy interaction for all three latent factors in the 

measurement  construct  with  a  small   to  medium  effect,  according  to  Cohen’s  (1988)  

criterion.  

 

These results show that the respondent’s   perceptions on the Organisational 
Professionalism, Intrinsic Motivation and Individual Control of Training Outcomes 
behavioural  scales  depend  strongly  on   the   joint  effect  of   the  participant’s  advanced  

aircraft flight experience, combined with his or her levels of computer competence. In 

other words, the two variables independently may have very little impact on 

perceptions of the training climate associated with the advanced aircraft; however, 

taken in unison, they appear to interact in such a way that this joint effect significantly 

separates categorical groupings on the various perception scales.  

 

5.9.2 Non-parametric comparative post hoc tests for independent samples 
(Mann-Whitney) based on the GLM results 

 

An omnibus F-test indicated only that the centroids of the median ranked scores 

were not co-located (Tabachnick & Fidell, 2007). Therefore, a series of post hoc non-

parametric comparisons were carried out between bivariate subgroups from each 

category to ascertain the exact location of significant differences. Because the 

distributions of the scores on the dependent variables were regarded as non-normal, 

the Mann-Whitney test was once more used to determine any significant differences. 

The method is ideal for unequal and small sample sizes (Babbie, 2010), as in the 

case of the computer literacy subgroups. The z-value provided by the test is an 

indication of whether the two subgroups come from the same distribution. However, 

other common interpretations of the Mann-Whitney non-parametric procedure are 

that the test actually checks the median equality of the two samples (Field, 2005). 

Table 58 depicts the calculated z-values and effect size for the three categories in 

terms of the size of the carrier, and four categories related to the  respondent’s   level 

of computer literacy. Table 59 in turn depicts the results for the calculated z-values 
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and effect size for the six categories of Digital flight time experience* Level of 

computer literacy.  

 

5.9.3 Size of the carrier 
 

Results from the non-parametric test (see Table 58) indicate that there is a significant 

difference between the perceptions of pilots employed at either a small organisation 

or a large organisation (p < 0.01).  When  one  compares  the  large  airline  pilots’  scores  

to those of the pilots from the group of smaller airline pilots, the scores of the pilots 

from the larger carriers are significantly higher only on the Organisational 
Professionalism scale (at a macro and intermediate level of the main measurement 

construct; Z = -2.941, p < 0.01, with a medium effect size, r = 0.396). The results 

indicate that, it is likely that pilots employed at the relatively larger airlines will have a 

better perception of the training and organisational structures that are in place with 

regard to the training they experience for advanced aircraft. According to Child 

(1973),  “Size  of  organization  has  often  been  cited  as  the  attribute  having  the  greatest  

single influence on the extent to which organizations develop bureaucratic forms of 

organization   structure”.   In addition, larger enterprises have access to far more 

resources and greater budgets, thus creating an impression of professionalism. 

Another hypothesised reason for this phenomenon may be that because there are 

more opportunities for trainees to come into contact with flight instructors and 

management outside of training events at smaller airline companies, it may begin to 

create a casual atmosphere for learning; by virtue of over-familiarity, perceptions of 

professionalism can be reduced (Katz & Khan, 1966).  

 

The medium effect size of the difference between larger and smaller carriers implies 

that it is of practical importance to understand the phenomenon of organisational 

professionalism and its subsequent impact in designing and developing training 

interventions and methodologies. In addition restructuring specific areas of the 

training may be necessary to enhance perceptions of training professionalism. For 

relatively small operators, it may be prudent to ensure that the training centre is well 

organised in terms of available learning resources, and that pertinent information 

about training issues (such as programmes, the names of instructors and timetables) 

are communicated effectively and timeously.  
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Table 58: Non-parametric comparison of mean rank scores by size of carrier 
and level of computer literacy 

Latent 
behavioural 
scale 

Variable N Mean 
rank 
score 

U Z Asym. 
Sig. 
two-
tailed 

Effect size r 

Size of carrier 
Organisational 
Professionalism 

Large 
Small 
Total 

135 
46 
181 

97.68 
71.39 

 

2203.00 -2.941 0.003* 0.396 Medium 

Organisational 
Professionalism 

Medium 
Large 
Total 

48 
135 
183 

78.81 
96.69 

2607.00 -2.009 0.440 - - 

Computer Literacy 
Intrinsic 
Motivation 

Poor 
Average 
Total 

5 
87 
92 

16.20 
48.24 

66.00 -2.617 0.009* 0.273 Small 

Individual Control 
of Training 
Outcomes 

Poor 
Average 
Total 

5 
87 
92 

24.50 
47.76 

107.50 -1.905 0.057 - - 

Intrinsic 
Motivation 

Poor 
Above 
Average 
Total 

5 
92 
 
97 

14.70 
50.86 

58.50 -2.810 0.005* 0.285 Small 

Individual Control 
of Training 
Outcomes 

Poor 
Above 
Average 
Total 

5 
92 
 
97 

18.00 
50.68 

75.00 -2.547 0.011* 0.259 Small 

Intrinsic 
Motivation 

Poor 
Excellent 
Total 

5 
45 
50 

8.00 
27.44 

25.00 -2.848 0.004* 0.403 Medium 

Individual 
Control of 
Training 
Outcomes 

Poor 
Excellent 
 
Total 

5 
45 
 
50 

8.90 
27.34 

29.50 -2.706 0.007* 0.383 Medium 

Intrinsic 
Motivation 

Average 
Above 
Average 
Total 

87 
92 
 
179 

82.66 
96.94 

3363.50 -1.849 0.064 - - 

Individual 
Control of 
Training 
Outcomes 

Average 
Above 
Average 
Total 

87 
92 
 
179 

79.39 
100.0

3 

3079.00 -2.678 0.007* 0.200 Small 

Intrinsic 
Motivation 

Average 
Excellent 
Total 

87 
45 
132 

61.40 
76.36 

1514.00 -2.137 0.033* 0.186 Small 

Individual 
Control of 
Training 
Outcomes 

Average 
Excellent 
 
Total 

87 
45 
 
132 

58.36 
82.24 

1249.00 -3.418 0.001* 0.297 Small 

Intrinsic 
Motivation 

Above 
Average 
Excellent 
 
Total 

92 
 
45 
 
137 

67.95 
71.14 

1973.50 -0.445 0.657 - - 

Individual 
Control of 
Training 
Outcomes 

Above 
Average 
Excellent 
 
Total 

92 
 
45 
 
137 

65.53 
76.09 

1751.00 -1.473 0.141 - - 

 P < 0.05 
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5.9.4 Computer literacy 
 

Table 58 shows that there are statistically significant differences (p ≤   0.05 to 

p < 0.01) between the pilots who regarded their level of computer literacy as either 

poor, average, above average or excellent, on most of the latent scales of the 

research construct. The more prominent differences appeared between participants 

who regarded their competence in computers as poor to those who felt that their 

competence was excellent.  

 

Airline pilots who regarded their level of computer literacy as poor were more 

negative about their training experiences for advanced aircraft, with regard to the 

microelements of the construct (that is, at an individual level of analysis). In other 

words, these participants felt less motivated to learn about advanced aircraft (Z =       

-2.848; p < 0.01, r = 0.403) and felt a sense of a loss in control over the outcomes of 

such training (Z = -2.706; p < 0.01, r = 0.383). 

 

Furthermore, it appears from the results that when the respondents reported an 

improvement in their computer literacy skills, their perception of their ability to take 

charge of their learning for advanced technology aircraft also improved at a 

statistically significant level. Less significant differences appeared, however, at the 

upper echelon of the computer literacy band (that is, differences between above 

average and excellent computer skills). This may be regarded as a ceiling effect. 

 
5.9.1 Digital flight time experience* Level of computer literacy  
 

The aforementioned results indicated that there were significant differences between 

the   effects   of   the   interaction   between   pilots’   experience in advanced technology 

aircraft combined with their level of computer literacy across most of the demographic 

categories and the latent scales. This effect warranted further investigation.  

 

According to the results depicted in Table 57 the respondents’   perceptions   on   the  

latent behavioural scales Organisational Professionalism, Intrinsic Motivation and 

 
 
 



- 275 - 

Individual Control of Training Outcomes were significantly (p = 0.05 to p < 0.01) 

affected by this interaction, with a small to medium effect size in terms  of  Cohen’s  

(1988) criterion.  

 

A closer examination of the effect of the interaction   between   pilots’   digital flight 

experience combined with their level of computer literacy in Table 59 revealed that 

the  impact  of  subjects’  advanced  aircraft  experience levels on their perceptions of the 

research construct depended more on their perceived computer literacy levels than 

on any other variable (such as size of carrier or age). In general it seems that among 

pilots with a low level of digital flying experience, those who felt that they had a high 

computer literacy tended to score higher on the three behavioural scales (p = 0.05 to 

p < 0.01). The results furthermore suggest that airline pilots with high levels of 

computer literacy and high digital flight time experience were statistically (p < 0.05) 

more positive about the overall advanced aircraft training climate than the 

respondents in all the other categories. In other words, it appears that computer 

literacy is a significant intervening variable on the potential impact that actual digital 

flight experience has on the training attitude of pilots. It may be posited at this point 

that low perceived computer literacy is linked to technological averseness, and that 

higher perceived computer literacy levels may substitute for digital flight experience. 

 

The overall results of the post hoc analyses suggest that the combined effect of a 

pilot’s  level  of  computer   literacy and experience levels on advanced aircraft have an 

important role to play in creating an understanding of the phenomena associated with 

pilots’   perceptions   of   the   training   climate. It appears that high levels of computer 

literacy compensate  for  a   lack  of  experience  on  the  aircraft,   in  respect  of   the  pilots’  

confidence and the way respondents feel and experience their training for new 

technology aircraft. Although the effect size was small in all significant differences of 

the interaction effect categories, the finding may be an important contribution to the 

current theory (see Table 59).  
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Table 59: Non-parametric comparison of the mean rank scores by the level of 
Digital flight time experience*Computer literacy  

Latent perception 
scale 

Level of digital flight 
time experience* 
Computer literacy 

N Mean 
rank 
score 

U Z Sig.  Effect size r 

Organisational 
Professionalism 
(F1) 

Low Experience*Low 
Computer Literacy 
 
Low Experience*High 
Computer Literacy 
 
Total 

 
19 
 
66 
 
85 

 
32.05 
 
46.15 

419.0 -2.195 0.028 0.238 Small 

Intrinsic Motivation 
(F2) 

Low Experience*Low 
Computer Literacy 
 
Low Experience*High 
Computer Literacy 
 
Total 

 
19 
 
66 
 
85 

 
31.29 
 
46.37 

404.5 -2.357 0.018 0.256 Small 

Individual Control 
of Training 
Outcomes 
(F3) 

Low Experience*Low 
Computer Literacy 
 
Low Experience*High 
Computer Literacy 
 
Total 

 
19 
 
66 
 
85 

 
27.18 
 
47.55 

326.5 -3.194 0.001 0.346 Medium 

Organisational 
Professionalism 
(F1) 

Low Experience*Low 
Computer Literacy 
 
High Experience*Low 
Computer Literacy 
 
Total 

 
19 
 
73 
 
92 

 
31.13 
 
50.50 

401.5 -2.818 0.005 0.294 Small 

Intrinsic Motivation 
(F2) 

Low Experience*Low 
Computer Literacy 
 
High Experience*Low 
Computer Literacy 
 
 
Total 

 
19 
 
 
73 
 
92 

 
38.00 
 
 
48.71 

532.0 -1.562 0.118 - - 

Individual Control 
of Training 
Outcomes 
(F3) 

Low Experience*Low 
Computer Literacy 
 
High Experience*Low 
Computer Literacy 
 
 
Total 

 
19 
 
 
73 
 
92 

 
39.32 
 
48.37 

557.0 -1.324 0.186 - - 

Organisational 
Professionalism 
(F1) 

Low Experience*Low 
Computer Literacy 
 
High Experience*High 
Computer Literacy 
 
 
Total 

 
19 
 
 
71 
 
90 

 
32.82 
 
48.89 

433.5 -2.384 0.017 0.251 Small 
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Latent perception 
scale 

Level of digital flight 
time experience* 
Computer literacy 

N Mean 
rank 
score 

U Z Sig.  Effect size r 

Intrinsic Motivation 
(F2) 

Low Experience*Low 
Computer Literacy 
 
High 
Experience*High 
Computer Literacy 
 
 
Total 

 
19 
 
 
 
71 
 
90 

 
32.97 
 
 
 
48.85 

436.5 -2.365 0.018 0.249 Small 

Individual Control 
of Training 
Outcomes 
(F3) 

Low Experience*Low 
Computer Literacy 
 
High 
Experience*High 
Computer Literacy 
 
Total 

19 
 
 
 
71 
 
90 

33.11 
 
 
 
48.82 

439.0 -2.342 0.019 0.247 Small 

Organisational 
Professionalism 
(F1) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
Low Computer 
Literacy 
 
Total 

 
 
66 
 
 
73 
 
139 

 
 
63.39 
 
 
75.97 

1 973.0 -1.840 0.066 - - 

Intrinsic 
Motivation 
(F2) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
Low Computer 
Literacy 
 
 
Total 

 
 
66 
 
 
 
73 
 
139 

 
 
76.86 
 
 
 
63.80 

1 956.5 -1.916 0.055 - - 

Individual 
Control of 
Training 
Outcomes 
(F3) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
Low Computer 
Literacy 
 
Total 

 
 
66 
 
 
73 
 
139 

 
 
82.48 
 
 
58.72 

1 585.5 -3.492 0.000 0.296 Small 

Organisational 
Professionalism 
(F1) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
 
66 
 
 
71 
 
137 

 
 
67.17 
 
 
70.70 

2 222.0 -0.521 0.602 - - 

Intrinsic 
Motivation 
(F2) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
 
66 
 
 
71 
 
137 

 
 
69.52 
 
 
68.52 

2 309.0 -0.147 0.883 - - 
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Latent perception 
scale 

Level of digital flight 
time experience* 
Computer literacy 

N Mean 
rank 
score 

U Z Sig.  Effect size r 

Individual 
Control of 
Training 
Outcomes 
(F3) 

Low Experience* 
High Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
66 
 
 
 
71 
 
137 

 
75.06 
 
 
63.37 

1 943.0 -1.736 0.083 -  

Organisational 
Professionalism 
(F1) 

High Experience* 
Low Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
 
73 
 
 
71 
 
144 

 
 
77.95 
 
 
66.89 

2 193.5 -1.591 0.112 - - 

Intrinsic 
Motivation 
(F2) 

High Experience* 
Low Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
 
73 
 
 
71 
 
144 

 
 
66.64 
 
 
78.53 

2 163.5 -1.717 0.086 - - 

Individual 
Control of 
Training 
Outcomes 
(F3) 

High Experience* 
Low Computer 
Literacy 
 
High Experience* 
High Computer 
Literacy 
 
Total 

 
 
73 
 
 
71 
 
144 

 
 
65.51 
 
 
79.68 

2 081.5 -2.049 0040 0.171 Small 
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5.10 BACKWARD STEPWISE LOGISTIC REGRESSION  
 

Logistic regression was used as a predictive analysis to classify subjects with positive 

perceptions regarding their training for advanced technology aircraft. One of the main 

advantages of using the logistic method, as opposed to a linear one, is that there are 

fewer requirements in terms of the assumptions in a logistic regression than for a 

linear regression (Cohen et al., 2003).   In   logistic   regression,   “the predictors do not 

have to be normally distributed, linearly related, or of equal variance within each 

group”   (Tabachnick  &  Fidell,  2007:437).     The   logistic process was also used for its 

inherent robustness when dealing with dichotomous or ordinal dependent variables 

(Leech et al., 2005). Ho (2006) asserts that the logistic regression method is ideal for 

the analysis of perception instruments that yield dichotomous scores. 

 

The model in this particular exploration was used primarily to uncover further 

important phenomena in the data set. The statistical analyses thus far had revealed 

some important outcomes; however, uncertainty remained about the relative 

predictive power of the independent variables. Some authors point out that one of the 

drawbacks in conducting a stepwise logistic regression is that it may model noise into 

the equation (Cohen et al., 2003; Field, 2005; Goldstein & Wood, 1989). Such noise 

may result in further uncertainty in conclusions about the data set. Hence, it was 

important to discover the predictive power of variables from a regression analysis in 

order to add to the theoretical knowledge on the topic of interest.  

 

Logistic regression was deemed suitable for this final examination of the research 

construct, because the dependent variable to be studied was a dichotomy and the 

independent variables were of varying types. The exploratory method involved an 

analysis, which began with a full or saturated model; variables were then eliminated 

from the model in an iterative process. 

 

The aim in this stage of the study was to develop a model that could, to some extent, 

predict whether pilots would perceive the technologically advanced aircraft training 

climate as favourable or unfavourable, based hitherto on what is currently known 

about the latent structure of the dataset.  Dummy  variables  of  “1”  or  “0”  were  allocated  

to cases where the average perception on the three-factor model exceeded 5.0 
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(because of the right skewness in the final dataset) or not, as the case may be. This 

provided a dichotomous measure, Favourability, of a categorical outcome that 

indicated level   of   airline   pilots’   comfort   in   the   advanced   aircraft   training   climate   in  

terms of their overall perception. A backward stepwise logistic method was used to 

determine the contribution each variable would make to the regression equation 

because  “sequential   logistic  regression  should  be  part  of  a  cross-validation strategy 

to investigate  the  extent   to  which  sample  results  may  be  more  broadly  generalized”  

(Tabachnick & Fidell, 2007:456). The equation for this exploratory method starts with 

all the selected independent variables first entered and then deleted after evaluation 

(Field, 2005; Ho, 2006). The following nine categorical or ordinal variables were 

included as predictors in the original model: 

 The   interaction  effect  between  a  pilot’s   level  of   flight  experience   in  advanced  

aircraft with that of his or her level of computer literacy, where 

1 = Low Experience*Low Computer Literacy; 

2 = Low Experience*High Computer Literacy; 

3 = High Experience*Low Computer Literacy; and 

4 = High Experience*High Computer Literacy. 

 A bivariate age grouping categorised in terms of respondents who indicated 

that they were either 40 years of age or younger and those who were over 40 

years old, where 

         0 = 40 and younger; and 

          1 = 41 and older. 

 Practical flight experience in advanced aircraft, where pilots with over 2 000 

hours flight time on these aircraft were considered as having high experience, 

and where 

         1 = Low Experience; and 

2 = High Experience. 

 Route training, which indicated how much a pilot enjoyed training on the actual 

aircraft, where 

         1 = Never Enjoy; 
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2 = Sometimes Enjoy; and 

         3 = Always Enjoy. 

 Simulator training, which indicated how much the pilot enjoyed training 

experience in the flight simulator, where 

         1 = Never Enjoy          

2 = Sometimes Enjoy; and  

         3 = Always Enjoy. 

 A variable which indicated the size of the carrier for which the respondent was 

employed, and where the size of the enterprise is represented as 

         1 = Large; 

2 = Medium; and 

         3 = Small. 

 Pilot unionisation, which refers to the degree to which the pilot group was 

unified in terms of belonging to the ALPA-SA – the organisation was either 

unionised, or not unionised, where 

1 = Unionised; and 

         2 = Not-unionised. 

 The level of computer literacy, which indicated the extent to which the candidate 

felt that his or her computer skills were either poor or good, where 

         1 = Low Literacy; and 

2 = High Literacy. 

 A company status/position category, which divided the sample into two specific 

groupings, either captain or co-pilot, where  

0 = Co-pilot; and 

        1 = Captain.  

 

The backward stepwise regression analysis was completed after five steps. A model 

containing four predictors subsequently emerged. In addition, five of the 
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aforementioned predictor variables were removed iteratively, namely pilot 

unionisation, age group, the size of carrier, the company status/position of the pilot 

and   the   pilot’s   actual   perceived   level   of   computer   literacy. The four variables that 

successfully  predicted  a  subject’s  perception  of  the  Favourability associated with the 

advanced aircraft training climate were:  

 

i) the interaction effect between  a  pilot’s   level  of flight experience in advanced 

aircraft and his or her level of computer literacy: 

ii) practical flight experience in advanced aircraft; 

iii) preference regarding training in the flight simulator; and 

iv) preference regarding route training in the actual aircraft. 

 

Table 60 shows that the overall percentage of cases for which the dependent 

variable was correctly predicted by the model was 63.8%. The results also show that 
the model was correct in predicting perceptions of a favourable climate 100% of the 

time (that is, high positive predictive validity). However, the model could not 

successfully  predict  respondents’  perceptions  of  an  unfavourable  training  climate.   
 

The effect size and practical significance of a regression analysis is generally 

provided for by examining the odds ratio and, less commonly, by computing the 
differences between Nagelkerke’s   pseudo   R-Square values (R2Δ)   (Cohen   et al., 
2003). A cut-off value of R2Δ   =   0.02   was   used,   as   suggested   by Schaap (2011), 

because the pseudo R2 is not technically a goodness-of-fit index, and cannot explain 
the proportion of the variance. Therefore, the result based on computation of R2Δ  for  

this study was used with caution in interpreting practical significance  

 
Nagelkerke’s  R2Δ  was  computed  by  first  calculating  the  value  of  the  pseudo  R2 at the 

initial step and thereafter finding the difference at each subsequent step. The effect 

size of the model at each subsequent step was less than 0.02 and could therefore be 

regarded as not practically significant in terms of this criterion. Nonetheless, overall, 

the final model was regarded as efficient (see Table 60).  
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Table 60: Classification table and model summary 

Classification  Predicted 

Observed 

Favourability of training climate  
Climate 

unfavourable 
Climate 

favourable Percentage correct 
   

Favourable 
training 
climate 

 Climate 
unfavourable 

0 83 (none correctly  
identified)         

0.0 
 Climate favourable 0 146 100.0 

  Overall percentage   63.8 
Model summary 

Step -2 Log likelihood 
Cox & Snell 
R2  

Nagelkerke’s  
R2  Nagelkerke’s  R2Δ 

1 266.955 0.134 0.184 - 
2 267.024 0.134 0.183 0.001 
3 267.534 0.132 0.181 0.002 
4 268.678 0.127 0.175 0.006 
5 270.021 0.122 0.168 0.007 
Step Hosmer and 

Lemeshow test 
chi-square 

Df Sig. (2-tailed) 

1 13.884 8 0.085 
2 8.399 8 0.396 
3 13.720 8 0.089 
4 11.272 8 0.187 
5 2.365 7 0.937 

 

 

The efficiency of the resulting model is endorsed by the non-significance in the result 

of the Hosmer and Lemeshow test chi-square statistic in the final step (2 [7, N=229] 

= 2.365, p = 0.937). These results confirmed that the final variables in the model 

predicted the observed data relatively effectively. According to Field (2005), the 

proportion of variance in the outcome variable associated with each of the predictor 

variables can be given by R2. However, because the dependent variable in this 

regression model was dichotomous or categorical in nature, only approximations of 

R2 were possible in SPSS Version 17.0; hence  the  choice  of  Nagelkerke’s  pseudo R2 

to gauge effect. Additionally, both the Cox and Snell R2, together with the Nagelkerke 
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R2 values, were used to determine that the final model could account for 

approximately 12% to 17% of the variability in the criterion variable.  

 

Table 60 shows that moderate changes occurred in the -2 log-likelihood values 

between the constant only model, and the first and last step, which is a good 

indication that the final model had improved predictive power. A nominal regression 

of the final four predictor variables in the model then produced a comparison in which 

the -2 log-likelihood values of the intercept only (95.338) and final model (65.456) 

indicated that the change in the amount of predictive power provided in the final 

solution was statistically significant [2 (4) = 29.883, p < 0.0001].  

 

Moreover,   McFadden’s   p2 [1-log likelihood (final)/log likelihood (constant)] = 0.313 

was computed as an indication of a measure of the strength of association between 

the predictor variables and the model. According to Tabachnick and Fidell 

(2007:460), McFadden’s   p2 is expected to be “lower” than the traditional R2 as a 

measure of effect size, and values between 0.20 and 0.40 are considered highly 

satisfactory.   In   terms   of   McFadden’s   p2 (as opposed to Nagelkerke’s   R2Δ), the 

analysis suggests that the size of the final logistic model is large and of practical 

importance.  

 

Table 61: Final logistic regression model 
 
Predictors in 
the equation  
(Xj) 

B S.E. 

Wald Chi-
square 
(B2/S.E.2) Df Sig. 

Odds 
Ratio 
(eB) 

95% C.I. for 
odds ratio 

Lower Upper 

Interaction 
effect 

0.630 0.310 4.126 1 0.042 1.878 1.022 3.448 

Advanced 
aircraft 
experience 

-1.064 0.613 3.011 1 0.083 0.345 0.104 1.148 

Enjoy route 
training 

0.485 0.289 2.814 1 0.093 1.624 0.922 2.861 

Enjoy 
simulator 
training 

0.806 0.267 9.138 1 0.003 2.238 1.327 3.773 

Constant -2.603 0.912 8.142 1 0.004 0.074   
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In the final model, the dependent variable, Climate Favourability, is on the logit scale. 

The computation results in Table 61 show that the probability that a respondent 

would perceive the advanced aircraft training climate as favourable can be given by 

the following three logistic regression equations (Tabachnick & Fidell, 2007:438): 

 Logit = ln (p/1-p) = -2.603 + 0.63 * (interaction effect) – 1.064 * (advanced 

aircraft experience) + 0.485 * (route training) + 0.806 * (simulator training) … 
 [Equation 1] 

 Prob (Favourable perception) = (e-2.603 + 0.63 X
1
 – 1.064 X

2 
+ 0.485X

3
+ 0.806 X

4)/(1+ e-2.603 + 

0.63 X
1
 – 1.064 X

2 
+ 0.485X

3
+ 0.806 X

4) …  
[Equation 2] 

 Log odds ratio = p/(1-p) …                                                                  [Equation 3] 
 

 

The model produced by the logistic regression is non-linear. In the current case, 

Table 61 shows that experience in an advanced aircraft and preference for route 

training did not improve the predictive efficiency of the model. The Wald chi-square 

statistics were non-significant for these two variables (p > 0.05), whereas the chi-

square value for the interaction effect of advanced aircraft experience and computer 

literacy as well as for enjoying simulator training was significant at a 0.05 level. 

Nonetheless, Hosmer and Lemeshow (2000), also cited in Tabachnick and Fidell 

(2007:456), recommend that for   “a   criterion   for   inclusion   of   a   variable   that   is   less  

stringent  than  0.05  …something  in  the  range  of  0.15 or 0.20 is more appropriate to 

ensure entry of variables with coefficients different  from  zero”. 

 

Thus, given that the other predictors remain in the model, it would appear that 

removing the interaction effect or information about preference for simulator training 

would result in significantly poorer predictive efficiency of the model (because these 

variables have greater significance). Overall, it can therefore be concluded that the 

predictive efficiency of a four-predictor model is not noticeably greater than that of a 

two-predictor model, which would then include only the variables Interaction Effect 
and Preference for Simulator Training.  

 

The estimated logistic regression coefficient for the interaction effect between flight 

experience in advanced aircraft * level of computer literacy was 0.63 and the 
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exponential of this value is e0.63=1.878. This indicates that for a one-unit increase in 

the interaction effect, the odds in favour of a trainee’s perceiving the training climate 

as favourable are estimated to increase by a multiplicative factor of 1.878. In 

addition, (p/1-p) = 1.878 implies that knowledge of the interaction effect can improve 

the probability of correctly predicting that a pilot will perceive the advanced aircraft 

training climate as either favourable or unfavourable by 65%.  

 

The estimated logistic regression coefficient   for   pilots’   preference for simulator 

training was 0.806 and the exponential for this value is e0.806=2.238. This indicates 

that for a one-unit   increase  in  a  pilot’s  positive preference for simulator training, the 

odds   in   favour   of   the   trainee’s   perceiving the training climate as favourable are 

estimated to increase by a multiplicative factor of 2.238. Furthermore, (p/1-p)=2.238 

implies that having knowledge  of  a  pilot’s  positive preference for, or an enjoyment of 

simulator training, can improve the probability of correctly predicting whether he or 

she will perceive the advanced aircraft training climate as favourable by 69% (that is, 

p = 0.69).  

 

To test the predictive power of the model, Equation 2 was then applied to the 

following extreme scenarios: 

 The computation of the probability of a trainee’s perceiving the climate as 
favourable given that the pilot has a low advanced aircraft experience*low 

computer literacy combination, low advanced aircraft flight experience, and 

reports never enjoying route or simulator training: 

 

 Prob(Fav)=(e-2.603 + 0.63 (1) – 1.064 (1)
 
+ 0.485(1)+ 0.806 (1))/(1+ e-2.603 + 0.63 (1) – 1.064 (1)

 
+ 0.485(1)+ 

0.806 (1)) 
           =e-1.746/1+ e-1.746 

                 =0.174/1.174 = 0.148 

 

 Therefore, the model predicts a very low probability (14.8%) that the candidate, 

given the aforementioned criterion, will perceive the advanced aircraft training 

climate as favourable. 
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 The computation of the probability of a favourable climate perception by a trainee 

who has a high advanced aircraft experience*high computer  literacy combination, 

and high advanced aircraft flight experience, and who always enjoys route or 
simulator training: 

 

 Prob(Fav)=(e-2.603 + 0.63 (4) – 1.064 (2)
 
+ 0.485(3)+ 0.806 (3))/(1+ e-2.603 + 0.63 (4) – 1.064 (2)

 
+ 0.485(3)+ 0.806 (3)) 

            =e1.662/1+ e1.662 

                  =5.270/6.270 = 0.840 

 

 Therefore, the model predicts a very high probability (84%) that the candidate, 

given the aforementioned criterion, will perceive an advanced aircraft training 

climate as favourable. 
 

The illustration of the usefulness of the logistic model as a predictor of climate 

favourability is demonstrated in the above example. Predictive efficiency thus 
appears to be very good for the two extreme cases.  

 

The probability curves based on the derived probability formula are depicted in 
Figures 28 and 29. The plots were computed for the two most important independent 

variables found by the regression model: 

 the Interaction Effect, where the variable is based on a combination of an airline 

pilot’s  number  of  hours  experience   in  advanced  aircraft  and  perceived   level  of  

computer  literacy; and 

 a preference for Simulator Training, a variable that refers to the airline pilot 

trainee’s  enjoyment  of  flight  simulator  training.     
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Figure 28: Probability plot for the interaction effect between experience and 
computer literacy  

 

 
Figure  28  clearly  shows  the  importance  of  a  pilot’s  perceived  computer   literacy in the 

interaction   effect   with   the   candidate’s   advanced   aircraft flight experience. The 

noticeable impact of this interaction on the probability curve is evident in the centre of 
the plot. The probability that a trainee will perceive the advanced aircraft training 

climate as favourable diminishes significantly when his or her levels of computer 

literacy drop,  even  when  the  person’s  levels  of  flight  experience  is  higher  (that  is,  the  
high probability of a favourable climate decreases between low experience*high 

computer  literacy and high experience*low computer  literacy). 

  
The second important predictor in the regression model is plotted in Figure 29. 
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Figure 29: Probability plot for Preference for Simulator Training 

 
 

 

The graph (Figure 29) depicts an almost linear relationship between a pilot  trainee’s  

preference or enjoyment of flight simulator training and the probability that the subject 

will perceive the training climate as either favourable or unfavourable. It appears from 

Figure 29 that understanding the levels of enjoyment a subject may experience with 

regard to simulator training has a significant impact on predictive power.  

 

The confidence intervals of the odds ratios for all the remaining singular predictors for 

the final model were consistently positive. According to Field (2009), findings based 

on the results of reporting positive confidence interval values present a possibility to 

generalise a regression model to the broader population. However, the small values 

of  Nagelkerke’s  R2Δ  in  the  current  analysis imply that the practical significance of the 

model should be considered in the context of the shortcomings of the study. 

Moreover, the relatively high standard errors (SE) of each predictor variable point to 

the possibility that the model may be unstable due to interference or noise 

(Tabachnick & Fidell, 2007).  
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The high homogeneity of the sample frame in terms of their education, experience 

and training profoundly skewed the data that dominate in the final model, creating 

interference in the predictors. Nonetheless, the results and conclusions drawn from 

the regression analysis provide pertinent information for assessing the suitability of 

candidates for advanced aircraft training. This study supports the conclusion that 

knowledge   of   both   the   interaction   effect   of   pilots’   experience in advanced aircraft 

combined  with  a  pilot’s  computer   literacy or competence, and the knowledge of the 

levels of enjoyment a pilot derives from simulator training, are highly useful predictors 

of   a   trainee’s   perception   of   the   advanced aircraft training climate. Appropriate 

interventions based on the understanding of this knowledge may in turn affect the 

level of success of the education methods and the interventions that are chosen, and 

thus the eventual success of training outcomes.  

 

5.11 SUMMARY 
 

The focus in this chapter was on interpreting and reporting the results of the 

phenomena associated with the latent factors of the theoretical construct. The results 

of a thorough exploration based on principal axis factoring and oblique rotation 

produced more factors than had been anticipated. Horn’s  parallel  method,  based  on  

the  algorithm  provided  by  O’Connor,   resulted   in  a   three-factor final solution. It also 

eliminated the Heywood anomaly in the data. The latent behavioural scales were 

labelled Organisational Professionalism, Intrinsic Motivation and Individual Control of 
Training Outcomes. The first factor is related to both the macro (organisational) and 

intermediate (instructor-trainee) levels of analysis. The remaining two latent factors 

both entail variables related to the micro or individual level of analysis, suggesting 

that the trainee, in this case, is a focal point in the phenomena associated with 

training for operating advanced aircraft. The various analyses conducted suggest that 

the measurement construct under investigation has a relatively stable factor solution. 

 

A  reliability  analysis  of  the  final  item  cohort  produced  highly  satisfactory  Cronbach’s  

coefficient alphas of between 0.70 and 0.95. It was also shown that the scale 

demonstrated very good discriminatory properties, given its ability to distinguish 

effectively between high and low scorers, suggesting excellent scale reliability and 

good overall development.  
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Exploration of the data set revealed that the scores were non-normal; therefore, 

subsequent analyses were based on using the appropriate family of non-parametric 

statistics. To establish a foundation for a further exploration of phenomena present in 

the data, a basic overall non-parametric comparative assessment was conducted, 

using the Kruskall-Wallis test statistic and supplemented for specific group 

comparisons by the Mann-Whitney test statistic.  

 

For associational evaluation of the data, the non-parametric  equivalent  of  Pearson’s  

R, Kendall’s  tau-b, was deemed most appropriate for the exploration of correlations. 

The   robustness   of   Kendall’s   tau-b assisted in offsetting the inherent problems 

associated with the non-normality and subsequent violations of assumptions in the 

current data set. The associational computation of conceptually significant variables 

allowed for a further statistically complex examination of the underlying phenomena 

present in the data. The results with regard to statistically significant correlations 

guided the researcher in the appropriate direction.  

 

Subsequently, a multivariate analysis of variance was conducted on the ranked order 

of   the  scores  on  digital   flight  deck  experience,  a  pilot’s  company  status,   the  size  of  

the   carrier,   pilots’   levels   of   computer   literacy   and   an   interaction   effect   between  

experience in advanced aircraft and computer literacy. The results were then 

scrutinised and thoroughly discussed in a post hoc analysis. 

 

In order to determine the predictability of the independent demographic data and to 

develop a structured explanatory model, a stepwise logistic regression analysis was 

carried out. The results produced a highly satisfactory model with four predictor 

variables. It was found that the derived logistic equation could satisfactorily compute, 

with reasonable probability (0.148 at the low end to 0.840 at the high end), whether a 

subject would hold an unfavourable or a favourable perception of the training climate.  

 

Overall, the results indicate that, although the nature of the data was differentially 

skewed, the use of appropriate (more robust) statistics provided satisfactory answers 

and revealed distinct and important phenomena, thus making a significant 

contribution to the current theory base on the topic. Furthermore, the methodology 

followed exposed both a relatively stable underlying factorial structure and a 
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prediction model that will be useful to airline organisations engaged in training 

advanced aircraft pilots.  

 

One of the main findings from the data analyses is that the interaction between a 

pilot’s  level  of  advanced  aircraft  experience in combination with his or her computer 

literacy, competence and/or abilities, has  a  significant  impact  on  the  pilot’s  perception  

of the advanced aircraft training climate. In addition, it was found that the use of flight 

simulators plays an extremely important role in training perceptions. Further study 

linking synthetic flight training (simulation) to real-life aircraft training and operational 

behaviour is recommended in order to enhance the current theoretical knowledge 

base.  

 

Against the background of the aforementioned research findings, a discussion of the 

results and recommendations follow in the final chapter. 
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