

Presenter : Terts "Stevie" van den Berg Department: ETPS A presentation on: Cockpit Development & Assessment, a Test Pilot School perspective To: European Flight Test Working Group

Date: 30 Oct 2013

Copyright ©QinetiQ.Ltd 2013

Cockpit Development & Assessment, a Test Pilot School perspective

Terts "Stevie" van den Berg

Empire Test Pilots' School (ETPS) Fixed Wing Flight Test Tutor

30 October 2013

Copyright ©QinetiQ.Ltd 2013

Overview

- ETPS & Systems Curriculum
- Design & Test Cycle
- Cockpit Assessment
- Systems Assessment
- Reporting
- Examples

Empire Test Pilots' School

ETPS background -1

- Unique UK MOD training facility since 1943
- MOD Boscombe Down, UK
- Aircraft Test & Evaluation Centre
- Partnership UK MOD and QinetiQ
- UK MOD and foreign customers training
 - Test Pilots (TP)
 - Flight Test Engineers (FTEs)
 - Rotary and Fixed Wing tracks

ETPS Aircraft

46 aircraft types, incl. QE aircraft in 2012

ETPS Graduate Courses -1

- Class A (1 year) [Class B (6 months)]
 - Meets EASA CAT-1 rating requirements [CAT-2 FT]
- Ground School
 - 400 (50 systems)
- Flying
 - 110 hours, 15 types
- Content
 - Stability & Control, Handling Qualities
 - Performance

ETPS Graduate Courses -2

• Specific Course Objectives:

- teach a philosophy which can be applied to <u>any type</u> of flight testing
- develop sound academic background to flight test
- teach and practice airborne test techniques
- develop skills in the analysis and presentation of flight test results
- develop a broad knowledge of all aviation matters
- promote team building skills by providing the opportunity of working with pilots and FTEs from a wide variety of nationalities and backgrounds
- for FTE students, to teach and develop the skills required to operate in the airborne environment

Systems Exercises -1

- 1. Cockpit Assessment (any type in hangar)
- 2. Intro to Workload (CBT)
- 3. Intro to Systems (KingAir, Gazelle, Tornado)
- 4. Integrated systems (ASTARS)
- 5. ACAS (KingAir, A109)
- 6. Night Vision (test house)
- 7. Head Mounted Display (F16 rig, Bell 205, MAT Huey, Apache)
- 8. Integrated Flight Decks/FMS (Airbus, Boeing, Merlin)
- 9. Military Systems (Gripen, C130J, Apache)
- 10. Preview (relevant type)

Systems Exercises -2

- Cycle: Groundschool > Demo > Exercise
- Syndicates vs Individual
- Exercise Cycle
 - Planning, Execution, Reporting
- Systems
 - Quantitative/Performance assessment
 - Qualitative assessment
 - Design and Interface development

Acquisition, Development & Test Cycle

Life Cycle, V-model

LEARN TO TEST · TEST TO LEARN

DT&E vs OT&E

Lifecycle

- Iterative design & evaluation process
- Initial design

VS

- In-service:
 - Changes of Role
 - Changes of capability
 - Modifications
 - Changes of population

• Assess Suitability of Operational Role

Test Type vs Standard (vs customer?)

- Experimental T&E Research objectives
- Developmental T&E Design specs/requirements
- Operational T&E
- Certification

- Acquisition
- Acceptance

Key User Requirements* CS/FAR series, MilSpec, DefStan 00-970 Key User Requirements* Contract

* Critical Operational Issues
(operational effectiveness, suitability)

Roles

- Need for Role definition
- Need for Task definition
- Need for Authority Specification?
- Need for Design Specification/description?

Aircraft Role & Tester Role

Development & Test Assets -1

- Operator/Testpilot involvement
- Continuous assessment loop
 - Drawing board, Powerpoint
 - Mock-up
 - Rig, Simulator
 - Virtual Reality
 - Cockpit
 - Ground Test
 - Flight Test: DT&E, OT&E

Development & Test Assets -2

- All have their pros & cons
 - Levels of efficiency, realism, flexibility
 - Limitations, cost, availability
- All have their Value and Place in time

- Essential:
 - Changes to developers and testers
 - Obtain continuity to maximum extent
 - Design trade-off/priorities
 - Keep record of design decisions

Cockpit Assessment

Purpose of Cockpit

- 3 basic functions:
 - Control
 - Information
 - Accommodation

All very different cockpits, but they may each be (un)satisfactory for the <u>Role</u>

Cockpit Design

- Cockpit design
 - Ergonomics / Human Factors
 - Human Machine Interface (HMI or PVI)
 - Physical & Mental component
- Elements
 - Control:
 - Information:
 - Accommodation

Steering, Systems Display video, Audio, Tactile Environment, Field of View, Lighting, Access, Comfort, "Basic" needs

Assessment Objectives

- To determine if cockpit provides suitable environment for effective and efficient operation and control of the aircraft and its systems during the mission
 - Assess suitability for a <u>Role</u>
 - Identify Design specs/assumptions
 - Define scope/conditions
 - Identify shortcomings/deficiencies
 - <u>Role</u> Relate

ETTEST TO LEARN ARN TO TEST TO LEARN Recommend improvements or further testing

Typical Cockpit Assessment items -1

- Opening/Closing doors/canopies
- Normal entry/exit
- Seat adjustment (DEP/REP)
- Strap-in
- Field of Regard/View

Cockpit Ingress

First action: lower the seat to make room

Crouch and lean forward, place leg far side of control column

Slide over the seat; lack of hand holds made this tricky

Emergency Egress

Why is FoV important?

LEARN TO TEST · TEST TO LEARN

Field of View plot (DEP/REP)

Typical Cockpit Assessment items -2

- Aircraft Inceptors/Flying Controls
 - Reach, adjustment
 - Deflection, fouling
- Actuators/Controls
 - Buttons, Switches, Knobs, Cranks, Levers, etc
 - Location, Reach, Feel, Shape, Labelling, Colour, Operation
- Displays/Instruments:
 - Location/Priority, Arrangement, Grouping
 - Size, readability, scaling, info/failure/limit presentation
 - Visibility/Lighting

— Warning/Attention getting, incl. tactile + audio

C

ETP

LEARN TO TEST · TEST TO LEARN

Considerations/Limitations

- Static vs Dynamic: often done on ground/sim/rig
- Environment
 - Day/night, Lighting, wind/precipitation, hangar/ship/platform, vibration, temp
- Variation in anthropometrics
- Flying Clothing
- "Fly" representative tasks
 - Operational tasks
 - Normal/emergency proc's
- Multiple evaluators: opinion

Assessment Tools

- Tasks/Testcards
- Flight Manual, checklist
- Inclinometer, Protractor, String, pencil
- Tape measure, Stopwatch
- Camera
- Flight Gear

Cockpit Assessment: Risks

- Aircraft Safe for Maintenance
 - Ejection seat, Canopy, Gear pins
- Operating APU
 - Noise

- Electrical/Hydraulic systems
 - Switches live with power off or battery on
 - Fire extinguisher buttons, Hook release
 - Flaps
- Operating Flight controls
 - Irreversible vs Reversible, cordon

ETTS Operating at height

Cockpit vs Systems

• Non-MFD:

- Assess operations of separate navigation, comms, transponder subsystems
- powering on/off, testing, changing modes, codes, settings and frequencies

- MFD:
 - Assess hardware
 - Controls, reach
 - Assess displays
 - visibility

Don't assess software functionality and menu structure

Test Plan

- Objectives
- Requirements
- Scope/Conditions
- Tasks
- Methods
- Recording
- Risks
- Test Cards

Systems Assessment

System vs Roles/Tasks: Questions

- Descriptions for both?
- Expertise in both?
- Experience with both?
- Crew concept/roles?

- Standalone vs Integrated system?
- External signals/input/support required?
- Performance and/or HMI?

HMI/PVI

- Control and Display
- Information:
 - clear, timely, correct, unambiguous
 - Not too little/early, too much/late, incorrect, ambiguous, confusing etc
- Representative <u>Tasks</u> and Environment
- Ground vs Flight
 - build up
- Setting options: low end, middle and high end

Test data: generic questions

- 1. Effectiveness
 - can I accomplish something I need/want to
- 2. Efficiency
 - can I accomplish this quick and easy
- 3. Error
 - can I accomplish this without chance of making an input/output error
- 4. Inadvertent
 - can I accomplish this without messing up something else

Test Data

- Quantitative:
 - Measurements: FoV, Reach, Head movement
 - Time required
 - Actions/Steps required
 - Workload?
- Qualitative:
 - Subjective
 - Opinion, Background, Experience, Culture, Bias
 - Multiple testers
 - Workload?

Taskload vs Workload

- Taskload:
 - Task demands
 - Objective measure (number of operations, cycle time)
- Workload:
 - Experience of the task demands (i.e. a feeling)
 - Subjective measure (perceived level of cognitive and physical load)

Subjective Workload Ratings

- Can be used "real-world" (vs "simulated")
- Administered during/after task execution
 - Non-intrusive to primary task
 - Ease and speed of application, low cost
 - Risk of "fading": assign immediately after task
- Multi-dimensional: more complicated
- Uni-dimensional: simple and quick
 - Usually ordinal and non-linear
 - Flight Test: sensitivity, simplicity, non-intrusiveness

Multi-dimensional

- Good diagnosticity, relatively complex, interval data
- Example: NASA TLX
 - Derives an overall WL rating based on 6 sub-scales
 - 1. Mental Demand (+ perceptual activity)
 - 2. Physical demand (physical activity)
 - 3. Temporal demand (time pressure)
 - 4. Effort (how much work)
 - 5. Performance
 - 6. Frustration level

Uni-dimensional

- Easy, simplicity, sensitivity
- Low diagnosticity, ordinal, non-linear
- Examples
 - Modified Cooper-Harper (MCH)
 - Bedford
 - Subjective Workload Assessment Technique (SWAT)
 - Subjective Workload Dominance (SWORD)
 - Malvern Capacity Estimate (MACE)

Bedford Workload Rating Scale

Display Readability Scale

Tolerances

- Applying Desirable vs Adequate tolerances
 - 100 vs75% of time
 - $-<\frac{1}{2}$ dot vs <1 dot
 - <20 vs <30 sec
 - Used on MCHs

• Bottom Line: Need clearly defined tasks

Examples of Tasks

- Context: Manual ILS in crew concept
 - PF tasks:
 - Primary task: Maintaining LOC/GS on speed
 - physical, mental, temporal, performance
 - so not just the aircraft handling
 - Secondary task: listening radios/crew, read back, checks
 - PNF tasks:
 - Primary Task: Programming ILS box, no error, <20 sec
 - Secondary: monitor instruments, making radio calls etc.

Test Reporting

7-part paragraph

- 1. Test and Test Conditions
- 2. Present the Data
- 3. Analyse & Discuss the Data
- 4. Role Relate
- 5. Conclude
- 6. Recommend
- 7. Specification Compliance

*optional: supporting imagery

Reporting considerations

- Detailed data <u>and</u> analysis
 - Ratings used to standardise and categorise, still need to describe and analyse results
- Unambiguous
- Scope, Limitations
 - To include detail on hardware/software config
- Repeatable
 - Seat adjustment, DEP/REP
 - Anthropometrics

ETPS Task, Methods, Environment

A few Examples

Yak-52 Gear/Flap design

-3 90 0-

9 0 ⁰ 1 8 4. Joe

20

F-16 M3 HMD design

F-16 HSI to COTS E-HSI modification

LEARN TO TEST · TEST TO LEARN

1. ORIGINAL EHSI DISPLAY

2. REVISED BASELINE EHSI DISPLAY

- Yellow Hdg Marker
- Outer Portion of Hdg Marker Moved Beyond Heading Tics
- HDG and CRS Labels on Knobs
- CRS Arrow Made Thinner and Moved Outward to 5-Degree Hdg Tics
- Allow CDI Deflection Beyond Two Dots
- CDI Lengthened, Gap Created Between Course Needle and CDI (See 4 below)
- PLS Replaced with ILS (consensus)
- Digital Heading Indication Removed
- Triangular Compass Indices Replaced with Bold Tic Lines

Bottom Line

- Test crew involved in design cycle from start
- Understand Requirements and Role
- Assess by executing representative tasks
- Understand limitations
- Maintain records of results and decisions
- Identify assessment risks
- Testing is not a trick, but a philosophy
- Never forget who the real customer is

The User

MAJ. TERTS VANDENBERG

C.C. B.I-IDELSTAD

F-IGA SERIAL NO 666 WARNING: THIS AIRCRA A CANOPY REMOVER CO AN EXPLOSIVE CH

Questions & Discussion

engine #1

9

.9

7 7

tail mentaring an

00

stabiliser

landing gear with superity mage

1 1/10 - 10

0

front door

(our door is always open... unless we're at 42 000 feet) co-captain (the other pilot on the PA system)

nose cone-

(radar, antenna and a really big dish inside)

elitanks margarian

The seal